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SUMMARY 

A comprehensive control policy structure utilizing Artificial Intelligence (AI) is presented for closed-

loop management in subsurface models. Conventional Closed-Loop Optimisation (CLO) approaches 

entail the iterative implementation of information assimilation, past synchronization details, and effective 

optimizing procedures. Information assimilation is more difficult when there is uncertainty in the 

geological approach and the specific model conclusions.  Closed-Loop Reservoir Monitoring (CLRM) 

offers a control strategy that promptly correlates flow information obtained from wells, as typically 

accessible, to appropriate well stress configurations. The rule is characterized by time-based compression 

and gate-based converter sections. Learning is conducted during a preprocessing phase utilizing 

geological modeling derived from various geological settings. Illustrative instances of oil extraction using 

water insertion, utilizing both 2 and 3-dimensional geological designs, are shown. The AI-oriented 

technique demonstrates a 17.2% increase in Net Present Value (NPV) for 2D instances, an additional 

31.5% for 3D cases compared to the effective optimization of previous models, and a 1-6.5% 

enhancement in NPV relative to standard CLRM. Based on the methods and variable configurations 

examined in this study, the controlling policy method yields a 71.34% reduction in processing expenses 

compared to conventional CLRM. 
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INTRODUCTION 

Closed-loop modeling is employed for management across several sectors, such as chemical plant 

activities, wind farm oversight, and subsurface administration of resources [1].  The Closed-Loop 

Optimisation (CLO) approach often involves the modification of system parameters (decisions) at 

various stages in response to new information [2]. In subsurface flow programs, such as groundwater 
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administration, CO2 sequestration, geothermal activities, and oil/gas manufacturing, CLO analysis often 

entails integrating information to integrate fresh well-based information and rigorous optimization 

procedures. 

This CLO involves identifying ideal well parameters (flow rates or tensions) that are mean over a series 

of realizations that reflect the uncertain underlying geology [19]. Both data integration, also known as 

history matchmaking, and resilient optimization methods are demanding. This is particularly applicable 

when the algorithms are derived from several geological situations. This applies if the research intends 

to examine systems with sand streams exhibiting varying introductions, sinuosity, width, etc. 

This study presents a novel controlling methodology for effective CLO [4]. Unlike conventional CLO 

techniques, the learning of the controlling method relies solely on past geological designs rather than 

history-matched ones, hence eliminating the necessity for the repetitive execution of operationally 

intensive integration of data and efficient optimization processes [5],[10]. In realistic scenarios, 

including nonlinear output limitations, such as an optimal field water generation rate, conventional 

resilient optimization methods yield excessively conservative remedies, as these limitations must be 

adhered to throughout all or almost all conclusions [14].  The management policy technique overcomes 

this problem by adjusting well parameters in a model-specific way depending on measurements [6].  

This study presents a broad and nonintrusive Artificial Intelligence (AI) based management policy 

technique for CLO of the flow simulation [3], [20].  The control strategy is constructed with temporal 

convolution and newly developed gated converter modules.  The structure is trained via the CLO 

approach, with the training information derived from flow experiments over a collection of previous 

geological modeling [8].  Upon adequate training, the procedure promptly correlates observable 

quantities to decision factors that dictate ideal configurations for current injection and manufacturing 

wells. The research evaluates the framework utilizing 2D and 3D geological modeling derived from 

singular and numerous geological situations, focusing on issues related to generating oil by injecting 

water.  The efficacy of the AI-based approach is evaluated against reliable optimization using previous 

geological simulations.   

BACKGROUND 

Several strategies have been proposed to alleviate the computing strain of optimizing and integrating 

data phases in conventional closed-loop processes. These encompass surrogate or proxy algorithms 

utilizing reduced-order numbers, Deep-Learning (DL) scenarios [9], and Machine-Learning (ML) 

algorithms [21].  A recent proposal introduced a DL surrogate utilizing Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN) for CLO [11]. Although the methods have demonstrated 

varied effectiveness in reducing computing needs, none face up to the conservative characteristics of the 

solutions derived via resilient optimization. Only some of these methodologies were intended to manage 

several geological conditions simultaneously. 

In robust optimization of output for oil and gas reservoirs that hold water, which entails identifying 

optimum controls for injecting and exploitation wells, the inherently cautious characteristics of 

optimization have spurred the creation of rule or controlling methodologies [7]. Zheng et al. suggested 

a strategy that establishes well settings and controls according to water cuts, defined as the proportion 

of extraction speed to the overall generation speed [12]. The policy variables in the investigation were 

derived by maximizing a foundational geological framework.  

El Bakali et al. proposed a control strategy that allocates the overall generation and injecting rates of 

liquids among wells according to a priority system, with priority defined as the quantity of water cutoff 

[13].  The controlling strategies were depicted by a series of explicit expressions that enhance the 

movement modeling.  Implementing this controlling strategy necessitates knowledge of the simulator's 

code repository.  Despite their efficacy, these controlling policy techniques frequently have significant 

heuristic elements and fail to account for the whole array of accessible data, much of which is 

instrumental in policy formulation. 
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Progress in ML has facilitated the application of AI methods for deriving policies in sequential decision-

making. AI has effectively trained AI entities capable of playing various games at human or superhuman 

proficiency. Given the exceptional proficiency of AI in formulating strategies for engaging in games, 

these methodologies are progressively being implemented in different fields. Li et al. examined the 

application of AI to derive active control techniques for drag decreases in turbulence [22].  Sharma et 

al. utilized AI for the open-loop oversight of conjugated heat transfer devices [15].  AI has been 

employed for form improvement in aerodynamic challenges. The application of AI in the growth and 

oversight of oil reserves has been extensively explored in recent research, as the study will now examine. 

Nasir et al. assessed several AI methods to enhance well controls across numerous geological 

conclusions [16].  A full CNN correlating variables like tension at every unit to reservoir controllers 

embody their strategy.  AI has been utilized for analogous problems where the regulation correlates the 

stress and boundary at every unit of specific modeling to the controllers.  Salehian et al. proposed 

strategies for maximizing producing wells' quantity, placement, and drilling sequencing [17]. The 

actions are modeled using a CNN and developed via several geological scenarios with different financial 

scenarios. In research for subsurface flow issues, reservoir modeling is established, and state variables, 

such as tension and oversupply, are accessible [18]. These numbers are unclear, and only manufacturing 

or injection statistics are recorded. The premises underpinning several current solutions are valid in 

(open-loop) mechanistic contexts. 

PROPOSED AI-BASED WELL CONTROL AND MANAGEMENT 

The rule and value variables must be specified to implement the proposed method.  The research denotes 

the policy (π) and valuation (V) variables using the neural network structure illustrated in Figure. 1. This 

design consists of a temporal convolutional unit and a gated converter component. 

 

Figure 1. Time-based and two-layer conversion block for optimization 

The observations 𝑑𝑘 encompass the flow speeds and BHPs at 𝑁𝑑 Periodic times throughout the initiation 

locations of controlling phases x-1 and x. This creates a subsequent temporal dimension (the controlling 

phases constitute the central dimension). To preserve the temporal relationships of the values in the 

recorded information, the research transform 𝑑𝑘into a matrix 𝐷𝑘. The matrix 𝐷𝑘functions as input to the 

time-based convolutional unit, which consists of 1D CNN levels that encapsulate the information format.  

The spatiotemporal unit produces a matrix 𝑒𝑘, serving as a concise data description. 𝑁𝑘 to denote the 

dimension of the retrieved characteristics. 

The gated converter unit has L levels, including Related Multihead Attentiveness (RMHA) and 

Multilayer Perceptron (MLP) subdivisions.  Records generated at various levels of the gated converter 

blocks capture the agent's state.  The preceding agent values for the L levels in the gated converter block 
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and the hidden representations of the present inquiry function as sources to the gated converter blocking 

during the current control phase k. At the beginning of the command phase, the agent's variables are set 

up to zero matrices.  In the final control phase, the agent perceives its position from all preceding control 

phases. 

The RMHA submodule executes H parallel attentiveness actions on the input, comprising the prior agent 

statuses and embeddings from the preceding layer. The attentiveness mechanism transforms each prior 

memory and encoding into a feature matrix.  The attention action results in a biased total of the 

characteristic matrices for sources, with more significant biases allocated to higher pertinent 

characteristics. It facilitates gathering characteristics from prior agent situations and embeddings 

relevant to calculating the present agent status.  The outcome matrices from the H attentiveness 

procedures are combined through a Fully Linked Layer (FLL) to generate �̂�𝑘. 

Recurrent Learning Unit (ReLU) signifies the gated operations functions, exemplified as a Gated 

Recurring Unit (GRU), utilized to enhance refinement stability.  The MLP submodule comprises two 

FLL layers that handle the result of the subcomponent after gates.  The operator condition is defined as 

the resultant anchoring from every layer.  

An FLL handles the encoding from the last layer of the gating converter to get the activity average and 

activity log-standard variation for the activity distributions at controlling phase k. The CNN is designed 

to outcome the log deviations rather than the variance, as its result might be harmful; exponential growth 

will yield elevated standard deviations, as necessary. The elements of the neural network's results that 

determine the activity average are in a proportional dimension.  Activities are selected from the event 

distributions during learning utilizing the activity average and standard variation.  An independent FLL 

analyzes the agent's condition to ascertain the scalar representation of the condition.  

The timed convolution unit comprises 1D CNN layers using 32 filters, with a filtering length of 2 in the 

initial and 3 in the subsequent levels.  The initial dense level in the MLP submodule comprises 32 units, 

whereas the subsequent layer contains 128 units. The complete system has roughly 621k elements.  

Closed-loop Optimization  

 

Figure 2. Closed loop optimization model 

To attain effective practical CLO and information absorption in the geothermal resource manufacturing 

procedure, the research offers a CLO system accelerated by DL surrogates. The optimizing, data 

integration, and geothermal reservoirs are interconnected to create a CLO system, enabling data and data 

sharing to enhance the optimizing process. Figure. 2 illustrates the closed-loop process.  The primary 

methods of the manufacturing optimizing system are outlined below:  
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• Gathering of historical manufacturing information: The historical manufacturing information of 

geothermal reservoirs, including manufacturing rate, bottom hole stress, and manufacturing 

temperatures, should be gathered and stored for information synthesis.  

• Iterative Ensemble Smoother (IES) based information assimilation: manufacturing data is utilized 

to determine subsurface production characteristics (e.g., permeability, pores, etc.) using the IES 

method. Due to the ensemble-based nature of the IES technique, a collection of variable 

understandings that encapsulate the ambiguity of reservoir attributes will be changed concurrently. 

The revised estimations with less uncertainty are anticipated to approximate the actual values. 

• Differential Evolution (DE) based productivity management: By predicting formation 

characteristics, well-controlled improvement for the subsequent production period is executed 

using the DE method. To account for reservoir characteristic uncertainty, a mean goal operator of 

the variable predictions is assessed and improved.  

• Closed-loop process: Following the CLO procedure, the refined, well-controlling procedures are 

executed throughout the ensuing manufacturing phase of the geothermal reservoirs.  The recently 

acquired production information for the next term can be employed for information integration to 

enhance the calibration of reservoir characteristics and diminish characteristic uncertainty. The 

revised reservoir characteristics optimize well control in the subsequent production phase. A CLO 

methodology is built, successfully combining information assimilation and manufacturing 

optimization processes concurrently. 

• The CLO procedure identifies the best drilling practices for various control stages, and well 

features and productivity advances are apparent. AI substitute modeling is employed for forward 

calculations, substituting numerical simulation in data absorption and optimizing processes, 

enhancing algorithmic performance.  

RESULTS 

The research implements the controlling policy-based CLRM technique on two illustrative scenarios. 

The initial example pertains to 2D methods derived from a singular geological situation, whereas the 

subsequent sample pertains to 3D models distinguished by five distinct situations.  The controlling 

method is juxtaposed with resilient optimizing based on previous geological scenarios, with predictable 

realization-by-realization improvement, and, in the initial instance, with conventional CLRM. 

2D Methods from a Single Situation 

This sample examines 2D geological systems. The training picture delineates the geological 

characteristics of the channelized network. The training picture, delineated on a 250 × 250 grid, 

encompasses an area far more significant than the understanding produced from it. Utilizing this training 

picture and conditioned to facial type (dirt or mud) at the well sites, the research produced 1000 

conditioned discoveries with the geostatistical technique. The positions of five generators and four 

injectors, all situated in canal sandy, are also depicted. The porosity of mud is designated as 40 

millidarcies, but the porosity of sand is established at 1650 millidarcies. The findings exhibit similarities 

in geological character; however, the channel placements and the connection among wells through high-

permeability conduits vary. 

Figure. 3(a) illustrates the progression of the anticipated NPV calculated using the geological modeling 

collected at the specified repetition and the well configurations established by the latest regulation.  The 

expected NPV often rises as training advances. The variations arise from the selection of geological 

modeling and checking activities from the event distributed.  The anticipated NPV of arbitrarily initiated 

method, amounting to $453 million, rises by 21.2% to $545 million over about 490 repetitions. 
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Figure 3(a). Net Present Value (NPV) prediction 

analysis 

 

Figure 3(b). CLO result analysis 

The singular group of reservoir management derived from the CLO is put into effect in every one of the 

45 scenarios.  The resultant NPVs were juxtaposed with those derived from the AI-oriented management 

scheme. Figure. 3(b) illustrates a cross-plot depicting this contrast. The chart indicates that, in 44 out of 

45 designs, the AI-based controlling strategy surpasses effective optimization compared to previous 

methods.  Compared with the last optimization, the monitoring policy has an average enhancement 

across all geological simulations of $65.7 million, or 15.8%. The enhancement from the AI-based 

strategy arises from the technique's capacity to explicitly customize the settings according to the 

information collected on a real-time system. 

3D Methods from Many Situations 

The geological modeling in the preceding example was derived from a singular geological situation. 

This example examines geological modeling from 5 distinct 3D situations. The geometry (form, 

dimensions) and direction differ across many scenarios. Conclusions are derived from every situation, 

with specific channel positions differing throughout discoveries. 

 

Figure 4(a). NPV prediction result analysis 

 

Figure 4(b). 40 test case geological method analysis 

Figure. 4(a) illustrates the progression of the anticipated NPV over the training period. The predicted 

NPV of the stochastic starting method ($221.5 millions) rises by 31% over 450 repetitions. The 40 

sample understandings are employed to assess the revised control strategies following every ten 

iterations. Figure. 4(b) illustrates the anticipated NPV of the controlling strategy over the 40 scenarios. 

Like the preceding example, the optimum controlling policy is identified as yielding the most significant 

predicted NPV. 

The computing expense of the monitoring policy technique is solely attributed to the preprocessing 

(learning) phase. Upon completion of training, the controlling strategy may promptly deliver ideal well 

parameters without any delay. This contrasts with typical CLRM, which needs around 170k further 

simulated runs (utilizing the variables from Example 1) at every controlling phase.  
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CONCLUSION 

This study presents a comprehensive, nonintrusive controlling system utilizing AI for the CLO of 

subsurface flow activities.  The control regulations, expressed through temporal compression and gated 

converter blocks, are taught using a proximate policy optimization technique. This involves solving a 

singular optimizing issue encompassing preceding geological scenarios. This contrasts with 

conventional CLRM methods requiring iterative data integration implementation and rigorous 

optimization procedures. Accurate representations of the geological modeling are recreated during every 

policy training repetition, and the governing policy variables are modified using AI. At every decision 

point in the live well controlling procedure, a learned controlling policy promptly correlates observed 

data with the ideal output and injecting well configurations. 

The control strategy development necessitated 140k total flow models, comparable to 500 sequential 

computations in a fully distributed environment. This constitutes just 25% of the models necessary for 

conventional CLRM, utilizing the techniques and variable settings examined in the work. The AI-

oriented method demonstrated the ability to yield solutions comparable to those obtained from the 

stochastic optimization of specific geological conclusions.  This discovery is substantial, as predictable 

optimizing is impractical due to the inherent geological uncertainty. The findings unequivocally 

illustrated the benefits of the control policy methodology compared to solid optimizations based on 

previous geological modeling and the conventional CLRM strategy. The controlled policy technique 

yielded an average enhancement of 17.2% in NPV compared with robust (previous) optimizing and a 

rise of 1 to 6.5% relative to conventional CLRM. 

Numerous avenues for further research exist in this domain. Applying AI might expedite the calculations 

necessary for training or flow network surrogate designs, and exploring these methodologies warrants 

investigation. The integration of realistic limitations, such as restrictions on the variations in well 

parameters between control phases, should be included. The methods might be broadly applied to aquifer 

administration, CO2 preservation, and geothermal-producing activities in subsurface movement. 

REFERENCES 

[1] Doekemeijer BM, van der Hoek D, van Wingerden JW. Closed-loop model-based wind farm control using 

FLORIS under time-varying inflow conditions. Renewable Energy. 2020 Aug 1;156:719-730. 

[2] Attia PM, Grover A, Jin N, Severson KA, Markov TM, Liao YH, Chen MH, Cheong B, Perkins N, Yang Z, 

Herring PK. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. 

2020 Feb 20;578(7795):397-402. 

[3] Mumtaj Begum H. Scientometric Analysis of the Research Paper Output on Artificial Intelligence: A 

Study. Indian Journal of Information Sources and Services. 2022;12(1):52–58. 

[4] Zhang X, Li Q, Qi G. Decision‐Making of a Dual‐Channel Closed‐Loop Supply Chain in the Context 

Government Policy: A Dynamic Game Theory. Discrete Dynamics in Nature and Society. 

2020;2020(1):2313698. https://doi.org/10.1155/2020/2313698 

[5] Castiñeira D, Darabi H, Zhai X, Benhallam W. Smart reservoir management in the oil and gas industry. 

InSmart Manufacturing 2020 Jan 1;107-141. Elsevier. 

[6] Elshall AS, Ye M, Finkel M. Evaluating two multi-model simulation–optimization approaches for managing 

groundwater contaminant plumes. Journal of Hydrology. 2020 Nov 1;590:125427. 

https://doi.org/10.1016/j.jhydrol.2020.125427 

[7] Bozkurt A. Investigation of Groundwater Zooplankton Fauna from Water Wells in Kilis Province from 

Türkiye. Natural and Engineering Sciences. 2023 Aug 1;8(2):86-105. 

[8] Sen D, Chen H, Datta-Gupta A, Kwon J, Mishra S. Machine learning based rate optimization under geologic 

uncertainty. Journal of Petroleum Science and Engineering. 2021 Dec 1;207:109116. 

https://doi.org/10.1016/j.petrol.2021.109116 

[9] Franciosa P, Sokolov M, Sinha S, Sun T, Ceglarek D. Deep learning enhanced digital twin for Closed-Loop 

In-Process quality improvement. CIRP annals. 2020 Jan 1;69(1):369-372. 

[10] Rosa C, Wayky AL, Jesús MV, Carlos MA, Alcides MO, César AF. Integrating Novel Machine Learning 

for Big Data Analytics and IoT Technology in Intelligent Database Management Systems. Journal of Internet 

Services and Information Security. 2024;14(1):206-218. 

[11] Wu Z, Rincon D, Christofides PD. Process structure-based recurrent neural network modeling for model 

predictive control of nonlinear processes. Journal of Process Control. 2020 May 1;89:74-84. 



Subbaiah, S. et al: Artificial intelligence for optimized…Archives for Technical Sciences 2024, 31(2), 140-147 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVI – N0 31           147 

[12] Zheng X, Junfeng SH, Gang CA, Nengyu YA, Mingyue CU, Deli JI, He LI. Progress and prospects of oil 

and gas production engineering technology in China. Petroleum Exploration and Development. 2022 Jun 

1;49(3):644-659. 

[13] El Bakali S, Ouadi H, Gheouany S. Efficient real-time cost optimization of a two-layer electric water heater 

system under model uncertainties. Energy Conversion and Management. 2024 Mar 15;304:118190. 

https://doi.org/10.1016/j.enconman.2024.118190 

[14] Robles T, Alcarria R, de Andrés DM, de la Cruz MN, Calero R, Iglesias S, Lopez M. An IoT based reference 

architecture for smart water management processes. Journal of Wireless Mobile Networks, Ubiquitous 

Computing, and Dependable Applications. 2015 Mar;6(1):4-23.  

[15] Sharma A, Jangam A, Shen JL, Ahmad A, Arepally N, Rodriguez B, Borrello J, Bouras A, Kleinberg L, 

Ding K, Hadjipanayis C. Validation of a temperature-feedback controlled automated magnetic hyperthermia 

therapy device. Cancers. 2023 Jan 4;15(2):327. https://doi.org/10.3390/cancers15020327 

[16] Nasir Y, Durlofsky LJ. Deep reinforcement learning for optimal well control in subsurface systems with 

uncertain geology. Journal of Computational Physics. 2023 Mar 15;477:111945. 

https://doi.org/10.1016/j.jcp.2023.111945 

[17] Salehian M, Sefat MH, Muradov K. Robust integrated optimization of well placement and control under field 

production constraints. Journal of Petroleum Science and Engineering. 2021 Oct 1;205:108926. 

https://doi.org/10.1016/j.petrol.2021.108926 

[18] Oikonomou K, Tarroja B, Kern J, Voisin N. Core process representation in power system operational models: 

Gaps, challenges, and opportunities for multisector dynamics research. Energy. 2022 Jan 1;238:122049. 

https://doi.org/10.1016/j.energy.2021.122049 

[19] Zhang N, Santos RM, Šiller L. CO2 mineralisation of brines with regenerative hydrotalcites in a cyclical 

process. Chemical Engineering Journal. 2021 Jan 15;404:126450. https://doi.org/10.1016/j.cej.2020.126450 

[20] Abdolrasol MG, Hussain SS, Ustun TS, Sarker MR, Hannan MA, Mohamed R, Ali JA, Mekhilef S, Milad 

A. Artificial neural networks based optimization techniques: A review. Electronics. 2021 Nov 3;10(21):2689. 

https://doi.org/10.3390/electronics10212689 

[21] Polese M, Bonati L, D'Oro S, Basagni S, Melodia T. ColO-RAN: Developing machine learning-based xApps 

for open RAN closed-loop control on programmable experimental platforms. IEEE Transactions on Mobile 

Computing. 2022 Jul 4;22(10):5787-5800. 

[22] Li Y, Chang J, Kong C, Bao W. Recent progress of machine learning in flow modeling and active flow 

control. Chinese Journal of Aeronautics. 2022 Apr 1;35(4):14-44. 


