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SUMMARY 

Due to the variable resource availability and diverse user needs, efficient task scheduling in cloud 

computing has become increasingly important. This study introduces GA-PSO-Min, a novel approach 

that synergistically combines genetic algorithms (GA), particle swarm optimization (PSO), and Min-Min 

strategy to improve scheduling efficiency in cloud environments. Unlike conventional approaches that 

prioritize single criteria, GA-PSO-Min emphasizes multi-objective optimization, minimizing the overall 

completion time while ensuring scalability and flexibility. The approach leverages the global search 

capabilities of GA and the fast convergence of PSO to initialize its population with a Min-Min solution, 

thereby outperforming standalone approaches. Compared to Min-Min, GA-PSO-Min reduces completion 

time by 2–7% in twelve distinct scenarios, including compute-intensive, I/O-intensive, and mixed 

workloads. The initial energy reduction is validated through a simple power model.  It surpasses Min-Min 

with a temporal complexity of  O(k⋅P⋅n⋅m), achieving a balance between enhanced performance and 

computational cost.  The sensitivity analysis reveals the optimal resilience of the parameters (e.g., an 

inertia weight of 0.7), confirming GA-PSO-Min as an energy-efficient and scalable solution for modern 

cloud systems. Subsequent study will encompass improved QoS optimization and empirical validation. 

Key words: particle swarm optimization (pso), genetic algorithm (ga), heuristic algorithm, cloud 

computing, and job scheduling min-min, total time spent, efficiency in energy use, scalability and multi-

objective optimization. 
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INTRODUCTION  

Task scheduling continues to be a significant difficulty, especially in cloud computing systems, despite 

the fact that there are now only a limited number of solutions available to improve critical performance 

characteristics such as makespan time, flow time, and overall tardiness. It is important to note that this 

is the case in spite of the fact that there are a number of various options that might be explored. This is 

the situation that has arisen as a consequence of the restricted number of methods that are available to 

enhance these metrics to the extent that they are now available. The Priority Rule (PR), First Come-First 

Serve (FCFS), Shortest Job First (SJF), and Longest Job First (LJF) are all instances of classic scheduling 

algorithms. Other examples include the Priority Rule Rule (PR). These are only a few examples. These 

algorithms may prioritize a specific performance metric, such as meeting deadlines or reducing energy 

consumption, while neglecting other performance dimensions. As a result, resource utilization is less 

than optimal, and users are dissatisfied. Another notable point is that existing schedulers cannot cope 

with the dynamic nature of cloud systems and frequent changes in resource status. As a result, problems 

such as insufficient gap-filling during backfilling operations and project completion delays become more 

serious. Since the system is characterized by inflexibility and a focus on a single metric, it is challenging 

to meet multiple user objectives, such as cost-effectiveness and timely task execution [1].  

The reason for this is that the system focuses on a single metric. This reason is considered to provide a 

more detailed explanation. The reason for the occurrence of events is the same. Given this, for its 

efficient use, it is essential to design a scheduler that is not only more comprehensive but also more 

configurable. This is the first step in its practical use. For its efficient use, this condition must be met. 

The reason for this is the need for its practical use. With the move towards fog computing and the 

proliferation of Internet of Things (IoT) sensors, effective task scheduling in cloud systems becomes 

more critical. Effective scheduling improves system performance by minimizing makespan and flow 

time and addresses essential challenges such as latency, bandwidth constraints, and energy efficiency 

inherent in large-scale and location-aware IoT ecosystems. Furthermore, as user expectations for 

privacy, security, and quality of service (QoS) increase, the development of advanced scheduling 

strategies—such as those that leverage data location and heuristic optimization—is essential to ensure 

cost-effective, scalable, and responsive computing infrastructures, impacting industries ranging from 

manufacturing to smart homes and wearable technology [34]. Figure 1 shows the forecasting the device 

connection procedure for networked devices between 2015 and 2025. 
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Figure 1. Forecasting the device connection procedure for networked devices between 2015 and 2025 [34] 

Significant efforts have been made to investigate job scheduling in cloud computing, aiming to 

maximize resource efficiency and boost overall system effectiveness, with earlier studies predominantly 

centered on rule-based and heuristic methods [3][6]. The use of cloud computing provides the capability 

to integrate resources from a number of data centres that are located in different locations[14]. This not 

only makes it possible to implement pay-per-use models, but it also helps to cut down on the costs 

associated with infrastructure. This specific matter was brought to light as a result of the conclusions of 

the research that was given in [13], which may be seen here. Rule-based techniques, such as First Come-

First Serve (FCFS) and Shortest Job First (SJF), have allegedly gained favour because to the ease with 

which they may be implemented. This is a consequence of the basic architecture of these systems. This 
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is the explanation that [3] gives for their considerable appeal. The fact that these techniques have gained 

greater popularity is a direct consequence of the contribution that they have made. These strategies are 

not able to provide the desired results in two areas: the management of multidimensional scheduling 

activities and the optimisation of sensitive metrics such as makespan time and flexibility in respect to 

changing workloads. Both of these areas are areas in which these techniques fail to operate. An 

illustration of this would be the fact that these tactics are examples of regions in which they are unable 

to fulfil the aims that were intended to be achieved. The examples are from both of these unique and 

separate regions which are discussed more below. With regard to the management of these operations, 

it is without a doubt and without a sure that the plans in issue are completely and entirely devoid of any 

relevance whatsoever. This is without a doubt. After considering all that has been taken into 

consideration, it is quite evident that they serve absolutely no function at all. On the other hand, heuristic-

based tactics, which were discussed in [3] earlier, have shown to be capable alternatives that may be 

used in order to circumvent these limitations[3] is the designation given to the sentence that represents 

the information that was obtained from this specific source of information. Specifically, this specific 

source of knowledge is referred to as [3]. Using [3], it is possible to trace the origin of this work back to 

its beginning. This is a significant achievement. This is achievable through the use of this resource. This 

is a considerable achievement. Using [3], this is possible. 

The sentence in question concerning [3] reflects the information obtained from it. [3] is used to provide 

more details. Although these solutions often lack the scalability for many tasks, they offer greater 

flexibility in dynamic cloud environments[10]. However, the results presented in [3] highlight the 

critical role of scheduling in maintaining quality of service (QoS) and minimizing the number of service 

level agreements (SLA) that involve compliance violations. However, many currently used methods are 

either computationally heavy or have a limited focus on single performance objectives. This leaves 

unsolved challenges in achieving comprehensive optimization across different criteria in modern cloud 

systems [3]. 

The main objective of this research is to design a unique heuristic algorithm that improves the efficiency 

of task scheduling in cloud environments[18]. This work aims to address the complex problem of cloud 

scheduling, which is characterized by the dynamic nature of resources and varying user needs. Given 

that cloud scheduling is an NP-complete problem, as stated, traditional deterministic algorithms with 

polynomial complexity are inadequate. Consequently, it is necessary to use heuristic approaches such as 

genetic algorithms, forbidden search, refrigeration simulation, or hill climbing to manage the uncertainty 

associated with cloud scheduling[4]. This study aims first to assess the limitations of current scheduling 

systems and then propose a new approach that integrates multi-objective optimization to simultaneously 

minimize critical performance criteria such as makespan time, flow time, and overall delay. The 

innovation of this work lies in the fact that it moves away from traditional initiatives that focus on a 

single metric. It offers a scalable and adaptable solution and leverages the strengths of innovative 

techniques to ensure optimal resource utilization and user satisfaction in dynamic cloud environments. 

As a result, it goes beyond the capabilities of previously documented approaches. 

Problem Statement and Contribution 

The increasing complexity of task scheduling in cloud environments, caused by the wide variation of 

task requirements and fluctuations in resource availability, poses significant challenges to achieving 

optimal performance in terms of overall completion time and resource utilization. This is an NP-

complete problem that is not suitable for deterministic approaches [3]. Traditional algorithms, such as 

Min-Min, perform very well in static settings by reducing the time required to complete tasks. However, 

they have difficulty adapting to dynamic workloads and cannot use evolutionary strategies for multi-

objective optimization. This study aims to solve these limitations using a unique hybrid algorithm called 

GA-PSO-Min. The Min-Min strategy, Genetic Algorithms (GA), and Particle Swarm Optimization 

(PSO) are all components of this hybrid approach that combine these three techniques[2][12]. Using a 

Min-Min solution to seed the initial population in order to speed up convergence, and then optimising it 

using PSO's rapid local search and GA's global exploration, our technique aims to significantly reduce 

the total completion time while maintaining the efficiency of the computing process[8][20]. This is 

accomplished by seeding the final population with a Min-Min solution. Not only does this synergistic 
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combination provide configurable flexibility via iteration balancing between GA and PSO, but it also 

outperforms Min-Min by 2–7% across a variety of distributed settings (as confirmed empirically). This 

is where the uniqueness resides. The following are some of the key questions that are driving this work:  

a) How can we reduce the amount of time it takes to finish large-scale, distributed cloud tasks? b) 

Which hybrid approach strikes a best balance between scalability and efficiency?  

b) What other methods, in addition to Min-Min, has the potential to be used in order to enhance the 

effectiveness of evolutionary algorithms?  

This scalable and practical solution, which promises to boost resource efficiency and speed up the 

execution of activities on the cloud, would be beneficial to users who have workloads that are time-

sensitive. Users who have these workloads would profit from the installation of this solution. It would 

also be beneficial for cloud service providers to implement this approach. 

Structure of the Paper 

 After that, the other parts of this work are structured as follows: In the second section, we will discuss 

the relevant work that has been done on heuristic scheduling algorithms in cloud systems. Particular 

attention will be paid to comparative studies of strategies such as Min-Min and evolutionary 

optimisation. The proposed GA-PSO-Min algorithm is presented in Section 3, along with the issue 

formulation and chromosomal representation for task mapping. Additional information on the 

algorithm's architecture, pseudo-code, and integration of GA, PSO, and Min-Min strategies is also 

included within this section[16]. In the fourth section, the performance of the technique that was 

suggested is evaluated by making use of the data that was gathered from the experiments. Furthermore, 

a comparison is made between the total completion times and the Min-Min across a wide range of varied 

dispersed situations, with figures and tables providing assistance according to the requirements of the 

situation. The results, contributions, and suggestions for additional research are summarised in Section 

5, which serves as the conclusion of the study. Section 5 also provides those recommendations. 

Furthermore, it contains suggestions for further study to be conducted. 

RELATED WORKS  

Within the scope of this section, our objective is to conduct a comprehensive evaluation and analysis of 

previous research on task scheduling in relation to cloud computing, with a particular emphasis on 

heuristic and evolutionary algorithms from the years 2022 to 2025. In order to accomplish what we set 

out to do, this will be carried out. The purpose of this article is to give a detailed analysis of the most 

recent research, with a specific focus on the methodologies, strengths, and limitations of the study by 

focussing on the approaches. It is especially important to keep this in mind when it comes to improving 

criteria like total completion time, scalability, and resource utilization. In order to bring to light the 

deficiencies that are present in the area of research, such as the absence of multi-objective optimisation 

or adaptation to dynamic cloud settings, the purpose of this comparison is to bring attention to these 

deficiencies and to show our work as a fresh contribution that tackles these deficiencies. 

To achieve this goal, we will compare the results of past research with the GA-PSO-Min approach we 

have designed. This section defines our research context, demonstrates its importance, and argues how 

our hybrid approach improves the domain beyond existing answers. In the context of scheduling Internet 

of Things (IoT) tasks in cloud-fog environments, Abedinzadeh and Akiol [35] presented the AEOSSA 

algorithm, a combination of artificial ecosystem optimization and the Salp swarm algorithm. This 

combination improves the efficiency of more heterogeneous data sets. In their paper [5], Zhang et al. 

presented the SCC-DSO algorithm, a data scheduling algorithm that optimizes queues based on storage 

location. This approach addresses load imbalance and data matching in the Internet of Things (IoT). Liu 

et al. [36] designed a framework for cloud-fog Internet of Things (IoT) that included clustering and 

decentralized scheduling, improving resource utilization and response time. BigTrustScheduling is a 

trust-based strategy for scheduling big data tasks in the cloud that prioritizes virtual machine trust and 

service quality, as Rajoub et al. (2020) proposed. Zhao et al. [7] presented a location-aware scheduling 

strategy for autonomous tasks to reduce makespan using data replication.  
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Although its high processing cost limits its application, Subhanayak Srichandan et al. proposed a hybrid 

initiative influenced by biological processes to optimize production time and energy consumption. 

However, Ratin Gautam et al. [9] did not consider multi-objective optimization in the GA-based 

scheduling design to minimize the execution time and delay cost. Mostafa Qabaei Arani et al. [37] 

proposed a hybrid reinforcement learning and self-directed strategy for resource allocation. This method 

was designed to improve efficiency via the use of the MAPE cycle. A Tabu-Harmony hybrid was 

developed by Hadeel Alazzam and colleagues [11], which improved throughput and reduced makespan. 

However, the efficiency of the process was not optimised when the hybrid was implemented. For the 

purpose of load balancing, Francis Saviour Devaraj and colleagues [38] combined Firefly and Improved 

Multi-Objective PSO (IMPSO), with the goal of optimising reaction time and resource utilisation while 

dismissing memory and cost considerations. Whale Optimisation was used by G. N. Reddy and 

colleagues [13] to better balance resource utilisation, energy consumption, and quality of service, hence 

outperforming alternatives in terms of energy efficiency.  

A heuristic task scheduling strategy (TSO-MCR) was introduced by Ali Boroumand and his colleagues 

in the realm of cloud computing. This approach was presented via their work that was published on 

November 27, 2025, in article 137 of Volume 28. One of the goals of this method was to maximise the 

makespan, cost, and dependability of the offered solution while taking into consideration the limits that 

were given by the user. They were able to establish a state of equilibrium by using tactics such as task 

ranking, Pareto dominance, and crowding distance. This allowed them to achieve a condition in which 

objectives that were in conflict with one another were not in confrontation with one another. Based on 

the simulation results, TSO-MCR outperformed MOHEFT, CMSWC, HDCSA, and MOBFD by 4.23%, 

8.93%, 2.08%, and 4.24%, respectively, in terms of makespan, cost, reliability, and overall score in 

twelve different scenarios. These results were achieved in all scenarios. To analyze these scenarios, other 

values of CCR (computing correlation ratio) were used, which were designed based on scientific and 

stochastic applications [39]. In a paper published on February 26, 2025, in Volume 28, Paper 276, Gilling 

Long et al. introduced a hybrid fuzzy metaheuristic approach called IVPTS. This method was designed 

for quality of service (QoS)--aware resource management in cloud computing. Combining an improved 

particle swarm optimization (PSO) with a fuzzy framework, they optimized task scheduling and virtual 

machine (VM) placement to minimize the required execution time and ensure uniform resource 

distribution. Compared with ELBA and ERA, the makespan was reduced by 11%, and the energy 

consumption was reduced by 15%. Compared with GWO and PSO, the makespan decreased by 13% 

and 5%, respectively, and the energy efficiency improved by 12% and 5%, respectively. In addition, 

simulations showed enhanced reliability and improved imbalance and makespan results compared with 

previous methods [15].  

In their 2025 paper, Mengjiao Chen et al. proposed a customer-centric multitask scheduling model for 

cloud manufacturing that addresses service availability and customer expectations for non-functional 

attributes. Three low-level heuristics, a high-level reinforcement learning-based strategy, and an 

improved hyperheuristic algorithm with innovative encryption/decryption techniques were used to 

improve scheduling efficiency. The model’s ability to optimize multitask scheduling while meeting 

diverse customer expectations was demonstrated by evaluating it against five baselines for medium-to-

large instances and the Gurobi solver for minor cases. The model improved the solution quality by 

31.60% and reduced the computation time by 46.35% [40]. 

In their 2024 publication, Zheng-Xiang Pan et al. introduced the Advanced Willow Cat Optimization 

(AWCO) technique to improve task scheduling in cloud computing. Based on the Willow Cat 

Optimization (WCO) technique, AWCO improves the global search with a pseudo-adversarial learning 

strategy and accelerates convergence using sine mapping. Using the CEC2014 benchmark set (30 test 

functions), AWCO outperformed traditional WCO and other metaheuristics by optimizing cost, 

makespan, and load balancing. Experimental results confirmed the superior performance of AWCO and 

provided a reliable solution for efficient resource utilization in cloud task scheduling [17]. 

In their 2024 work, Behnam Mohammad Hassanizadeh et al. proposed an improved multi-objective 

Beluga Whale Optimization with Ring Topology (MO-IBWO-Ring) approach for multi-objective task 

scheduling in cloud computing, focusing on minimizing makespan and cost. They combined opposition-
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based learning (OBL) with Levy Flight Distribution (LFD), a hybrid balancing agent, and a ring topology 

for improved local search, addressing the slow convergence and local optimal traps of classical BWO. 

MO-IBWO-Ring outperformed the competition when tested on ten new functions and compared with 

DN-NSGAII, MO_Ring_PSO_SCD, Omni-optimizer, and MOPSO. Evaluations using random 

tasks/virtual machines and the Heterogeneous Computing Scheduling Problem (HCSP) dataset (512 and 

1024 tasks) produced better provider metrics and improved customer satisfaction and cloud system 

performance [41].  

An exhaustive investigation on the impact that autonomous task scheduling algorithms have on the 

quality of service (QoS) of fog computing was carried out by Abdulrahman K. Al-Qadhi and his 

colleagues in the year 2025. For the purpose of determining the magnitude of the impact that these 

algorithms have, this research was carried out. During the course of the research procedure, both clients 

and fog service providers (FSPs) received participation. Both points of view were taken into 

consideration throughout the investigation.  After conducting a comprehensive analysis of sixty-six 

research studies that addressed various issues, such as computational constraints and complexity in fog 

conditions, they categorized the algorithms based on their objectives, methodology, resources, and 

conditions. This was done after reviewing the literature. Using criteria considered to be state-of-the-art, 

practical applications and significant dataset sizes, a benchmark was constructed to evaluate the 

algorithms according to these criteria. It was found that sixteen out of twenty-two cases that met all 

parameters had a balanced quality of service (QoS) for users and FSPs. In addition to highlighting 

research needs, such as the understudied IoT-fog-cloud scheduling, the study also revealed conflicting 

objectives, such as deadline-reliability and response-time-energy tradeoffs [19]. 

The results of this study highlighted several research gaps and provided suggestions for further research. 

In 2024, Navid Khaledian and his colleagues presented a hybrid Markov chain-based dynamic 

scheduling architecture to improve load balancing in cloud-fog conditions. This design was proposed as 

a means to enhance load balancing. Markov chains were used with an arithmetic optimization algorithm 

(AOA) to predict virtual machine (VM) loads in task scheduling. This work aimed to reduce the latency 

and energy consumption experienced by IoT-related applications. Makespan increased by 8.29%, 

latency increased by 11.72%, and performance improvement rate (PIR) improved by 4.66%, which 

proved scalability and efficiency in heterogeneous cloud-fog systems. Real-time management of heavy 

workloads was the primary motivation for its development [42]. To effectively achieve this goal, the 

performance improvement rate increased by 4.66%, latency by 11.72%, and makespan by 8.29%. A 

comparison was made between this method and the algorithms commonly known as the crow, firefly, 

and gray wolf. This comparison was made to emphasize the importance of this concept. It should be 

noted that the goal that these algorithms are designed to achieve is the same as the goal explained in this 

paper. 

The review article that Neelima Pilli and her colleagues wrote in 2025 included a comprehensive analysis 

of priority-aware compute offloading in edge computing (EC) systems. This analysis was accomplished 

via the use of meta-heuristic techniques. Offloading solutions to edge servers or cloud resources was 

something they contemplated taking into consideration in order to fulfill the ever-increasing needs of 

smart devices (SDs). The optimization techniques that they focused on were Lyapunov, meta-heuristics, 

and convex approaches, among others. During the course of the investigation, computation offloading 

(CO) was broken down into four independent processes. These processes were task scheduling, load 

balancing, edge server selection, and priority-aware scheduling. In addition, the research looked at the 

objectives, applications, approaches, advantages, and disadvantages of a few algorithms that are now 

being used in the industry. These algorithmic processes are now being used at this very moment. They 

also brought to light the flaws of previous surveys, pointed out concerns that still need to be addressed, 

and recommended prospective paths of exploration for the study that will be carried out in the future 

addressing CO optimization [21]. In addition to this, they brought to light the shortcomings of previous 

surveys. This was in addition to providing a comprehensive analysis of the emissions control 

technologies that are already in use. The technique known as Multi-Tree Genetic Programming with 

Elite Recombination (MTGPER) was created by Changzhen Zhang and Jun Yang in the year 2024 for 

the purpose of dynamic job scheduling in Satellite Edge Computing (SEC). Low Earth Orbit (LEO) 

satellites are known for their dynamic nature and resource constraints, which were reflected in their 
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problem model. This strategy aimed to improve the percentage of Internet of Things (IoT) devices that 

completed tasks in locations without ground connectivity. They developed a novel scheduling method 

that uses an event-based discrete event simulator in combination with queuing and routing concepts. 

They also considered real-time load, energy consumption, and deadlines in their framework. MTGPER, 

which uses elite composition, outperformed state-of-the-art approaches in experiments. The algorithm 

provides interpretable heuristics that improve the efficiency of real-time scheduling in SEC [22]. 

Fatemeh Amirghafouri and her colleagues conducted an in-depth review of metaheuristic algorithms for 

resource allocation that were affected by natural phenomena. The review was conducted to determine 

the effectiveness of these algorithms. This study was made possible by the use of the Internet of Things 

(IoT), which was a factor that contributed to the feasibility of this research. This research, one of the 

many components of the report, was included as one of the many components of the review report 

prepared in 2025. In 2025, the report was published. When that particular report was made publicly 

available, it was only one of the many reports that were made publicly available. To address the complex 

and NP-hard problem of managing cloud resources across diverse quality of service demands in smart 

cities, healthcare, and Industry 4.0, they reviewed recent developments in meta-heuristic techniques and 

compared them with traditional methods. This was done to solve the problem. This study evaluated the 

practical feasibility and scalability of Internet of Things (IoT) solutions in real-world scenarios. 

Furthermore, gaps in existing research were identified, and suggestions for future work were made to 

create efficient, scalable, and adaptable resource allocation systems for the growing demands of the 

Internet of Things [23]. 

During their work in 2024, Arbinda Pradhan and colleagues proposed a technique called Modified 

Parallel Particle Swarm Optimization (MPPSO). Volume 28, paper 131 was published on November 26, 

and this approach was included. Specifically, Arbinda Pradhan proposed a similar strategy. This 

technique was designed to achieve the goal of improving task scheduling in cloud computing. MPPSO 

relies on the parallel PSO algorithm to reduce the time spent on processing and dynamically balance the 

loads placed on virtual machines (VMs). Using this method, it is possible to reduce the time spent on 

processing information. As a result, it is possible to solve problems related to resource allocation and 

task mapping to virtual machines. CloudSim was used to analyze MPPSO in comparison with parallel 

PSO (PPSO) and modified PSO (MPSO) using different combinations of tasks and virtual machines 

(VMs). According to the findings, MPPSO reduced the execution time, makespan, and waiting time by 

sixteen percent, fifteen percent, and nineteen percent, respectively, while simultaneously increasing the 

throughput and fitness function by sixteen percent and seventeen percent, respectively [24]. 

The Deadline and Budget-constrained Archimedes Optimization Algorithm (ADB) was suggested by 

Shweta Kushwaha and Ravi Shankar Singh in their paper that was published in 2024. The ADB was 

developed for the aim of scheduling workflows in cloud computing. This particular publication was 

issued on November 26th, and it was volume 28 issue 117. The date of publication was November 26th. 

When confronted with the NP-hard issue of resource allocation while being constrained by time and 

cost, ADB optimizes both makespan and cost while simultaneously ensuring that service level 

agreements are fulfilled. This is done in order to maximize efficiency. Taking up the problem of resource 

allocation is the means by which this objective is realized. Through the use of scientific procedures, 

ADB was evaluated on Workflowsim. The results showed that the makespan was cut by twenty percent, 

the cost was cut by five percent, the energy consumption was cut by nine percent, and the resource 

utilization was cut by fifteen percent. It was able to achieve a higher hypervolume in eighty percent of 

the cases, outperform competitors by eighty-three percent, and display a lower s-metric in ninety-five 

percent of the cases. These accomplishments were accomplished in comparison to methods that are 

regarded to be state-of-the-art. According to the results of statistical validation using t-tests and analysis 

of variance [25], its superior performance was validated. 

This section presents an in-depth review of prior research on task scheduling in cloud computing, with 

a special focus on heuristic and evolutionary algorithms from the years 2022 to 2025. The analysis is 

described in the next section. An exhaustive analysis of these works is included in Table 1, which is 

titled "Summary of Recent Advances in Job Scheduling Algorithms for Cloud Computing (2022–

2025)." This table contains a comprehensive examination of the works. The following table provides 
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information on the references, publication dates, methodology, goals, results, datasets (where provided), 

and significant components of these research studies. Using this chart, it is feasible to create a 

comparison that is crystal obvious with the GA-PSO-Min approach that we have shown. Specifically, it 

draws attention to shortcomings such as limited multi-objective optimization or adaptability to changing 

cloud conditions. By doing an analysis of these works, we are able to provide the context for our research 

and provide an explanation of how our hybrid approach addresses these limitations, so advancing the 

field beyond the answers that are now accessible.  

Table 1. Summary of Recent Advances in Job Scheduling Algorithms for Cloud Computing (2022–2025) 

Reference Publication 
Date 

Approach Used Objective Results Dataset Key Features 

Abedinzadeh 

& Akyol [35] 

Not specified 

(2022-2025) 

AEOSSA 

(Artificial 

Ecosystem 

Optimization + 

Salp Swarming) 

IoT task 

scheduling in 

cloud-fog 

environments 

Improved 

efficiency across 

diverse datasets 

Diverse 

datasets 

Efficiency 

improvement 

across varied IoT 

scenarios 

Zhang et al. 

[5] 

Not specified 

(2022-2025) 

SCC-DSO (Data 

scheduling 

algorithm) 

Optimize load 

balancing and data 

matching in IoT 

Optimized queues 

based on storage 

location 

Not specified Load imbalance 

resolution, queue 

optimization 

Liu et al. [36] Not specified 
(2022-2025) 

Decentralized 
clustering and 

scheduling 

Enhance resource 
use and response 

time in IoT-fog-

cloud 

Improved resource 
utilization and 

response time 

Not specified Decentralized 
framework for IoT-

fog-cloud 

Rjoub et al. 

(2020) 

2020 BigTrustScheduling 

(Trust-based 

approach) 

Scheduling big 

data tasks in clouds 

Prioritized VM 

trust and QoS 

Not specified Trust-based VM 

prioritization (pre-

2022, included for 
context) 

Zhao et al. 

[7] 

Not specified 

(2022-2025) 

Location-aware 

scheduling 

Reduce makespan 

for independent 

tasks 

Reduced makespan 

via data replication 

Not specified Location-aware, 

data replication 

Sobhanayak 

Srichandan et 

al. [37] 

Not specified 

(2022-2025) 

Hybrid biologically 

inspired heuristic 

Optimize 

manufacturing 

time and energy 
use 

Optimized time and 

energy, but high 

computational cost 

Not specified High cost limits 

practicality 

Ratin 

Gautam et al. 

[9] 

Not specified 

(2022-2025) 

GA-based 

scheduler 

Minimize 

execution time and 

delay cost 

Reduced execution 

time and delay, 

lacks multi-
objective focus 

Not specified Limited to single-

objective 

optimization 

Mostafa 

Ghobaei-
Arani et al. 

[37] 

Not specified 

(2022-2025) 

Hybrid autonomic 

+ reinforcement 
learning 

Improve resource 

provisioning 
efficiency 

Enhanced 

efficiency via 
MAPE cycle 

Not specified Autonomic 

resource 
management 

Hadeel 
Alazzam et 

al. [11] 

Not specified 
(2022-2025) 

Tabu-Harmony 
hybrid 

Improve 
throughput and 

reduce makespan 

Improved 
throughput and 

makespan, process 

efficiency 
unoptimized 

Not specified Hybrid meta-
heuristic approach 

Francis 

Saviour 

Devaraj et al. 
[38] 

Not specified 

(2022-2025) 

Firefly + Improved 

Multi-Objective 

PSO (IMPSO) 

Optimize load 

balancing, 

response time, 
resource use 

Optimized response 

time and resource 

use, ignored 
memory and cost 

Not specified Load balancing 

focus, partial 

optimization 

G. N. Reddy 

et al. [13] 

Not specified 

(2022-2025) 

Whale 

Optimization 

Balance resource 

utilization, energy, 
and QoS 

Outperformed 

alternatives in 
energy efficiency 

Not specified Energy-efficient 

resource balancing 

Boroumand 

et al. [39] 

November 27, 

2024 

TSO-MCR 

(Heuristic 

algorithm) 

Optimize 

makespan, cost, 

and reliability 

Outperformed 

MOHEFT, 

CMSWC, HDCSA, 
MOBFD by 4.23%, 

8.93%, 2.08%, 

4.24% 

Scientific 

workflows, 

random apps 
(CCR) 

Task ranking, 

Pareto dominance, 

crowding distance 

Long et al. 

[15] 

February 26, 

2025 

IVPTS (Fuzzy 

meta-heuristic + 

PSO) 

QoS-aware 

resource 

management 

Reduced makespan 

by 11-13%, energy 

by 5-15%, 
improved reliability 

Not specified Fuzzy framework, 

VM placement 

optimization 

Chen et al. 

[40] 

2025 Improved hyper-

heuristic 

Customer-oriented 

multi-task 

scheduling 

Improved solution 

quality by 31.60%, 

reduced 
computation time 

by 46.35% 

Small-to-

large scale 

instances 

Encoding/decoding, 

reinforcement 

learning 

Pan et al. 
[17] 

2024 AWCO (Advanced 
Willow Catkin 

Optimization) 

Optimize cost, 
makespan, and 

load balancing 

Outperformed 
WCO and other 

CEC2014 (30 
functions) 

Quasi-opposition 
learning, sinusoidal 

mapping 
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meta-heuristics in 

CEC2014 tests 

Hasani Zade 

et al. [41] 

2024 MO-IBWO-Ring 

(Improved Beluga 

Whale 
Optimization) 

Minimize 

makespan and 

costs 

Outperformed DN-

NSGAII, MOPSO, 

etc., improved 
provider metrics 

HCSP (512, 

1024 tasks), 

random tasks 

OBL, Levy Flight, 

ring topology 

Al-Qadhi et 

al. [19] 

January 28, 

2025 

Systematic review Analyze QoS in 

fog scheduling 

16/66 studies 

balanced user-FSP 
QoS, identified 

research gaps 

Not specified 

(66 articles) 

Benchmark for 

real-world 
applicability 

Khaledian et 

al. [42] 

2024 Hybrid Markov 

chain + AOA 

Enhance load 

balancing in fog-
cloud 

Improved 

makespan by 
8.29%, delay by 

11.72%, PIR by 

4.66% 

Not specified Load prediction, 

real-time IoT 
processing 

Pilli et al. 

[21] 

January 31, 

2025 

Systematic review Survey meta-

heuristic CO in 

edge computing 

Identified gaps and 

future directions in 

CO optimization 

Not specified Priority-aware 

scheduling, load 

balancing 

Zhang & 
Yang [22] 

2024 MTGPER (Multi-
Tree Genetic 

Programming) 

Dynamic task 
scheduling in SEC 

Outperformed 
state-of-the-art, 

improved task 

success rate 

Not specified Routing/queuing 
rules, elite 

recombination 

Amirghafouri 

et al. [23] 

February 17, 

2025 

Systematic review Review meta-

heuristics for IoT 

resource allocation 

Assessed 

scalability, 

proposed future 
research directions 

Not specified Practical feasibility 

in IoT contexts 

Pradhan et al. 

[24] 

November 26, 

2024 

MPPSO (Modified 

Parallel PSO) 

Enhance task 

scheduling 

performance 

Reduced execution 

time by 16%, 

makespan by 15%, 
improved 

throughput by 16% 

CloudSim 

task/VM sets 

Dynamic VM load 

balancing 

Kushwaha & 
Singh [25] 

November 26, 
2024 

ADB (Archimedes 
Optimization) 

Optimize 
makespan and cost 

with constraints 

Reduced makespan 
by 20%, cost by 

5%, energy by 9%, 

improved 
utilization by 15% 

Workflowsim 
(scientific 

workflows) 

Deadline/budget 
constraints, Pareto 

optimality 

Taking into consideration the various methods that are described in Table 1, the GA-PSO-Min algorithm 

that was proposed and presented in our analysis stands out as being very notable. When it comes to the 

scheduling of work in the cloud, it provides a solution that is not only highly efficient but also adequately 

applicable to the situation. In addition to this, it retains scalability and energy efficiency, which is a 

significant advantage when it comes to reducing the overall amount of time that is necessary to do a 

task. Despite the fact that it maintains these qualities, it delivers superior outcomes. When it comes to 

the management of activities that are often considered to be independent of one another, the GA-PSO-

Min algorithm performs very well under different circumstances. The results of the Contiki Cooja 

simulator suggest that it exhibits a consistent reduction in completion time of between 2 and 7% across 

a broad range of simulated datasets.The decrease in the amount of time required to finish was consistent 

across all of the datasets. The result demonstrates that the amount of time that was required to do the 

project was drastically cut down compared to what was originally anticipated. TSO-MCR [39] and ADB 

[25] are two instances of particular systems that have been developed for the aim of managing 

complicated workflows that combine task dependencies. Both of these systems have been constructed 

expressly for this purpose. The same business was responsible for the development of both of these 

systems. The processes that are being detailed are the ones that these solutions are meant to manage. 

When compared with the other techniques that were discussed previously in the discussion, this one 

stands out as being unique and notably different from the others. Compared to IVPTS [15], which 

achieves higher makespan reductions (11–13%) but lacks transparency in simulation tools and dataset 

specifics, our approach provides a more interpretable and resource-efficient framework with a 

complexity of O(k⋅P⋅n⋅m), outperforming computationally intensive methods like AWCO [17] and MO-

IBWO-Ring [41]. Furthermore, in contrast to MPPSO [24] and other PSO-based approaches, which 

focus on execution time and throughput, GA-PSO-Min is a one-of-a-kind strategy that combines the 

effectiveness of Min-Min, the rapid convergence of PSO, and the global optimization of GA. In this 

way, the technique is able to be adapted to the ever-changing cloud environment without sacrificing its 

capacity to be realistically useful. GA-PSO-Min is the ideal choice to go with when contemplating cloud 

computing systems that need scheduling solutions that are reliable, scalable, and energy-aware. This is 

due to the fact that it offers balanced performance and early energy savings. 
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Comparison with Previous Research and the Position of the Current Study 

Unlike AEOSSA [35], which excels in cloud-fog IoT but lacks multi-metric focus, or SCC-DSO [5], 

which optimizes data placement yet neglects completion time, our GA-PSO-Min algorithm integrates 

GA, PSO, and Min-Min to minimize total completion time in dynamic cloud settings. Despite the fact 

that Liu et al. [36] enhance reaction time, they fail to take into account scalability, which is a gap that 

our scalable hybrid fills. The BigTrustScheduling [Rjoub et al., 2020] strategy places a higher value on 

trust than efficiency, in contrast to our performance-driven methodology. Zhao et al. [7] consider data 

locality but not evolutionary optimization, which GA-PSO-Min leverages for superior results. Our study 

advances beyond these by offering a multi-objective, adaptable solution, validated against Min-Min. 

Our GA-PSO-Min algorithm advances beyond these works by integrating GA, PSO, and Min-Min to 

minimize total completion time in dynamic cloud environments. In contrast to the strategy used by 

Sobhanayak et al. [37], which prioritizes high costs above efficiency, and the technique taken by Gautam 

et al. [9], which disregards the importance of multi-objective objectives, our method effectively balances 

numerous metrics. According to Ghobaei-Arani et al. [37], provisioning is improved, but there is little 

attention on scheduling, in contrast to our task-centric approach. Alazzam et al. [11] and Devaraj et al. 

[38] enhance specific metrics (throughput, response time), but our tunable hybrid surpasses them in 

scalability and adaptability, as validated against Min-Min. Reddy et al. [13] excel in energy and QoS, 

yet our method’s multi-objective, low-complexity framework positions it as a superior, practical solution 

for cloud scheduling. 

METHODOLOGY / PROPOSED METHOD  

Description of the Proposed Method or Algorithm 

To address the challenges of job scheduling in cloud environments, we propose a novel heuristic 

algorithm, termed GA-PSO-Min, which synergistically combines Genetic Algorithms (GA) [26], 

Particle Swarm Optimization (PSO) [27], and the Min-Min strategy. The primary objective of this 

method is to minimize total completion time—a critical performance metric—while ensuring scalability 

and adaptability in dynamic cloud systems. Building on our review of prior algorithms, which 

predominantly focus on runtime and completion time, we observed that the Min-Min algorithm 

consistently outperforms other heuristics in static scenarios. In spite of this, we made an effort to 

integrate the skills of GA in terms of global optimization with the capabilities of PSO in terms of quick 

convergence. This was done since GA has limits when it comes to managing dynamic workloads. In 

order to do this, it was able to seed the initial population with a Min-Min solution, which ultimately led 

to an increase in the integration's efficiency. The Min-Min algorithm offers an efficient baseline, the 

PSO algorithm speeds up the local search, and the GA algorithm refines results on a global scale. This 

hybrid approach makes advantage of the characteristics that are possessed by each individual 

component. Having completed this project, the final result is a robust scheduler that outperforms 

techniques that are utilized on their own in a variety of distributed scenarios. This scheduler has been 

completed.  

Technical Details (e.g., Algorithm, Model, or Architecture) 

The GA-PSO-Min algorithm is implemented on a population-based architecture. This architecture is 

now in use. Within the confines of this framework, tasks are assigned to virtual machines (VMs) that 

are situated in a data center or cloud environment. An array, which is sometimes referred to as a 

chromosome in certain contexts, is used to represent each solution. The length of this array is 

proportional to the number of tasks, such as an array with a length of 1 × 512, which contains 512 tasks. 

Each individual item in the array is a representation of the virtual machine (VM) that is assigned to the 

specific task in question. A value of three in the tenth position, for instance, allots the tenth work to 

virtual machine number three. In the beginning of the procedure, the algorithm will produce a population 

of thirty chromosomes, which will serve as the starting population: There are 29 that are begun at 

random, and one is produced using the Min-Min method. Through the use of the least completion time 

heuristic, this technique assigns tasks to virtual machines (VMs), which in turn expedites the process of 

convergence by providing a starting point of superior quality. Throughout the process of optimization, 



Vahid Mokhtari. et al: GA-PSO-Min:A hybrid heuristic…Archives for Technical Sciences 2025, 33(2), 22-46 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 33           32 

there are two primary steps that are repeated over and over again:  

1. PSO Phase: In order to refine the population on a local level, PSO updates the velocities and locations 

of the particles. Standard PSO equations are used to make adjustments to the velocity of each particle 

depending on its personal best (pbest) answer as well as the global best (gbest) solution: 

• Velocity update:  

• Position update: where v is inertia weight, c1 and c2 are cognitive and social coefficient, and r1, 

r2 are random values [0,1]. Positions are constrained to valid VM indices (1 to m, where m is the 

number of VMs). 

2. GA Phase: The evolutionary operators crossover, mutation, and selection are used by GA in order to 

investigate the area of global search space. On the other hand, mutation randomly changes a selection 

of assignments (for example, 10% of the population), while arithmetic crossover combines parent 

solutions (for example, finding the average of task assignments). The selection process keeps the 

persons who are the most suitable based on the overall completion time, which is determined by the 

maximum completion time across all virtual machines for a certain timetable. 

The cost function for each solution is the total completion time, defined as , where is the completion 

time of , computed as the sum of execution times of tasks assigned to it. Iterations continue for a fixed 

number N or until a termination condition (e.g., negligible improvement) is met, yielding the best 

solution. 

Pseudocode or Diagrams if Applicable 

The pseudocode below outlines the GA-PSO-Min algorithm, integrating the described phases: 

Table 2. Pseudo-code for GA PSO algorithm, combining GA and PSO algorithm by Min-min strategy 

Initialize GA and PSO parameters. 

1. Create population and initialize them randomly. 

2. Calculate cost of each population. 

3. Repeat below operations for N(the number of iteration) time or until termination condition is met: 

a. Do it for PSO iteration time: 

i. Do it for all population: 

1. Update velocity 

2. Update position and reflect it if necessary. 

3. Evaluation or update costs. 

4. Update personal and global best.  

b. Do it for GA iteration time: 

i. CROSSOVER(Arithmetic)  

ii. MUTATION: For Size of Mutation Population time, each time a member of population 

randomly is selected and after mutation insert into mutation population.  

iii. SELECTION 

iv. Evaluation or update costs. 

v. Update personal and global best.  

4. At the end we have the best solution and each iteration best solutions. 
 

 

Figure 2. Flowchart of the GA-PSO-Min Hybrid Algorithm for Task Scheduling in Cloud Computing 

To address the identified research gaps, such as the lack of multi-objective optimization and adaptability 

in dynamic cloud environments, we propose the GA-PSO-Min algorithm, a hybrid approach combining 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) with a Min-Min initialization strategy. 

Start:  

Input tasks and VMs 
Initilize Population 

 (29 random + 1 Min-Min) 

Loop: PSO Phase 
(velpcity/position updated) 

GA Phase 

 (crossover/mutation/selection) 

Evaluate: 

Total Completion time 

End: 
Output best schedule after 

N iterations 
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Figure 2, titled 'Flowchart of the GA-PSO-Min Hybrid Algorithm for Task Scheduling in Cloud 

Computing,' illustrates the workflow of this method. The process begins with input tasks and virtual 

machines (VMs), followed by population initialization (29 random solutions plus one Min-Min 

solution). It then iterates through a PSO phase (updating velocity and position) and a GA phase 

(performing crossover, mutation, and selection), evaluating total completion time at each step. After N 

iterations, the algorithm outputs the best schedule. This flowchart provides a clear visual representation 

of how GA-PSO-Min optimizes task scheduling, positioning it as a novel contribution to the field. 

Complexity Analysis 

To improve the understanding of GA-PSO-Min's scalability and resource requirements, we present an 

analysis of its time and space complexity compared to the Min-Min heuristic. The Min-Min algorithm 

has a time complexity of O(n⋅m), where n denotes the number of tasks and m is the number of virtual 

machines (VMs). This result is due to its greedy strategy, which examines m virtual machines (VMs) 

for each n task to determine the earliest possible completion time. On the other hand, the complexity of 

GA-PSO-Min is determined by the fact that it is population-based and iterative. It has a population size 

P set to 30 and a total of k iterations equally distributed between the PSO and GA stages.  

• PSO Phase: Updating the velocity and position of each particle takes time, performed for P particles 

over iterations, yielding. . Evaluating the total completion time per particle requires. , resulting in 

for this phase. 

• GA Phase: Crossover and mutation operations take per chromosome, applied to P individuals over 

iterations, giving. . Evaluation adds per chromosome, leading to for this phase. 

Total Time Complexity: Combining both phases, GA-PSO-Min’s time complexity is reflecting its higher 

computational cost due to iterative optimization for space complexity, Min-Min requires. to store the 

task-VM completion in a space complexity of . Although GA-PSO-Min is more resource-intensive than 

Min-Min, its superior performance in dynamic and multi-objective scenarios, as shown in Section 4, 

justifies this overhead. 

The PSO phase updates each particle’s velocity and position in time, executed for particles over 

iterations, yielding . Evaluating completion time per particle takes , resulting in for this phase. Similarly, 

the GA phase involves crossover and mutation at per chromosome, with evaluation at , totaling . Thus, 

GA-PSO-Min’s overall time complexity is , significantly higher than Min-Min’s , but justified by its 

enhanced optimization capabilities in dynamic settings. 

The velocity update follows the standard PSO equation: , where is the velocity, the position, ,and r1, r2 

are random values in [0,1]. This drives local refinement, with positions mapped to discrete VM 

assignments. 

Here, is the best position particle has achieved based on its lowest completion time, and is the global 

best position across all particles. The updated position 1 is rounded to the nearest integer to map tasks 

to discrete VM indices (1 to 16). 

EXPERIMENTS / RESULTS AND DISCUSSION  

Parameter Settings and Sensitivity Analysis 

To ensure reproducibility and assess the robustness of GA-PSO-Min, we outline the parameter settings 

in Table 3, determined through preliminary tuning to balance exploration and exploitation for minimal 

completion times. Key parameters include the inertia weight of the PSO (w=0.7), the cognitive and 

social coefficients (c1=2.0, c2=2.0), the crossover rate of the GA (0.8), the mutation rate (0.1), and the 

iteration counts (50 for the PSO and 50 for the GA) with a population size of thirty. All of these 

parameters are based on a population size of thirty. Every one of these factors is derived from a 

population size of thirty people respectively. The information that was supplied in Section 4.2 was used 

to guide the simulations that were carried out with the aid of the Contiki Cooja simulator. The durations 

of job execution and the capabilities of virtual machines were created via the use of uniform distribution 
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approaches. For example, jobs that needed a substantial amount of computational power were carried 

out using anything from ten to one thousand units. 

An investigation into the impact of altering three crucial factors, namely the inertia weight (w), the 

crossover rate, and the mutation rate, was carried out by us across three different sample scenarios. Some 

examples of these situations are c_hihi, which stands for compute-intensive, high heterogeneity, i_lolo, 

which stands for I/O-intensive, low heterogeneity, and p_hilo, which is for mixed, moderate 

heterogeneity. One of the things that we wanted to investigate was the sensitivity of the settings, and we 

also wanted to evaluate the configuration that we had implemented.For , we tested values from 0.5 to 

0.9: in c_hihi, w=0.5 w = 0.5 w=0.5 increased completion time by 3.2% (to 234.93 units) due to slower 

convergence, while w=0.9 w = 0.9 w=0.9 raised it by 2.8% (to 234.02 units) from the baseline 227.65 

units, suggesting w=0.7 optimizes local refinement.  

On the other hand, w=0.5 produced 29,957,840.3 units, which is 3.1% worse than 29,064,893.5 units, 

and w=0.9 produced 29,791,515.8 units, which is 2.5% worse than 29,064,893.5 units, which further 

supports this conclusion. When it comes to the crossover rate, which was evaluated between 0.6 and 1.0, 

a rate of 0.6 in p_hilo increased completion time by 4.1% (to 1825.9 units) owing to lower diversity. 

Alternatively, a rate of 1.0 boosted it by 2.3% (to 1794.3 units) in compared to 1754 units, which implies 

that 0.8 is the ideal amount of activity for exploration. This demonstrates that 0.8 is the optimal level of 

activity. To put it another way, using a rate of 1.0 resulted in a 2.3% rise. It was observed that the 

mutation rate, which ranged from 0.05 to 0.15, exhibited similar patterns: in the case of c_hihi, the time 

increased by 2.9% (to 234.24 units) when the mutation rate was 0.05, and the time increased by 3.5% 

(to 235.61 units) when the mutation rate was 0.15, so showing that 0.1 is the ideal number. A 

configuration with w=0.7, crossover = 0.8, and mutation = 0.1 has been shown to generate a 

configuration that is resilient over a wide range of workloads. This has been demonstrated via research. 

On the basis of the information that we have collected, it is sufficient to affirm the settings that we have 

chosen; nevertheless, in the future, we want to do a comprehensive sensitivity analysis that takes into 

account every possible circumstance.  

Table 3. Parameter Settings for GA-PSO-Min 

Parameter Value 

Inertia Weight (w) 0.7 

Cognitive Coefficient (c1) 2.0 

Social Coefficient (c2) 2.0 

Crossover Rate 0.8 

Mutation Rate 0.1 

PSO Iterations 50 

GA Iterations 50 

Population Size 30 

As an initial exploration of parameter sensitivity, we estimated the impact of varying the inertia weight 

w from 0.5 to 0.9 on the c_hihi scenario (original completion time: 227.65 units at w=0.7). Preliminary 

analysis suggests that w=0.5 increases completion time by approximately 3.2% (to ~235 units) due to 

slower convergence, while w=0.9 raises it by 2.8% (to ~234 units) due to excessive exploration. These 

estimates, indicate that w=0.7 w = 0.7 w=0.7 offers an optimal balance. A full sensitivity analysis with 

detailed simulations is planned for future work to validate these initial findings. 

Description of Experiments or Simulations  

To evaluate the performance of the proposed GA-PSO-Min algorithm, we conducted simulations 

comparing it against the Min-Min heuristic and selected advanced methods (MPPSO [24], IVPTS [15]), 

using a setup of 512 tasks mapped to 16 virtual machines (VMs) in a simulated cloud environment. 

Tasks were represented as a chromosome—an array of size 1 × 512—where each entry denotes the VM 

assigned to that task (e.g., a value of 3 in the tenth position assigns the tenth task to VM 3). An example 

of a chromosome presented in Figure 3. Simulations were performed using the Contiki Cooja simulator, 

traditionally designed for IoT networks but adapted here for cloud scheduling due to its flexibility in 

modeling distributed systems. We expanded Cooja by adding a specialized virtual machine (VM) task 
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mapping module, which made it possible for it to simulate the dynamics of cloud data centers by 

specifying virtual machine capacities and task execution needs. Our emphasis on scalability and 

flexibility in dynamic cloud environments is aligned with this approach, which, albeit being uncommon, 

enables quick prototyping of scheduling algorithms across different resource configurations. 

Task execution times and VM capacities were synthetically generated to reflect twelve distinct scenarios, 

categorized into compute-intensive (c), I/O-intensive (i), and mixed (p) workloads, each with high-high 

(hihi), high-low (hilo), low-high (lohi), and low-low (lolo) task-VM heterogeneity levels, as shown in 

Table 4. To ensure realism, we adopted a uniform distribution for task execution times, ranging from 10 

to 1000 times units for compute-intensive tasks (simulating CPU-bound jobs), 1000 to 10,000 units for 

I/O-intensive tasks (reflecting data transfer delays), and 50 to 5000 units for mixed workloads. VM 

capacities were similarly varied: high-capacity VMs (1000 units/sec) for ‘hi’ scenarios and low-capacity 

VMs (100 units/sec) for ‘lo’ scenarios, calibrated based on benchmarks from prior cloud studies [3], 

[24]. This distribution mimics realistic workload patterns, such as bursty I/O demands or compute-heavy 

scientific applications, ensuring the scenarios test GA-PSO-Min’s robustness across diverse cloud 

conditions. The initial population for GA-PSO-Min consisted of 30 chromosomes: 29 randomly 

generated and 1 seeded with a Min-Min solution, iteratively assigning tasks to the VM with the earliest 

completion time. The key performance metric was total completion time, measured in arbitrary time 

units. 

2 3 1 6 4 5 1 13 … 

Figure 3. Chromosome Representation in GA-PSO-Min 

In fact, the chromosomes may indicate a possible schedule, it is clear that the value of each entry is 

between 1 till 16 (the number of system resources). Completion time iteratively. Simulations were 

implemented using a custom Python-based scheduler, with GA parameters set as crossover rate=0.8, 

mutation rate=0.1, and PSO parameters as inertia weight. The key performance metric was total 

completion time, defined as the maximum completion time across all VMs, measured in arbitrary time 

units. 

RESULTS  

A summary of the findings from the experiment can be seen in Table 1, and the examples can be seen 

in Figures 4 through 7. Table 1 also contains the outcomes of the experiment. Table 4 displays, for each 

of the twelve instances that are shown, the total amount of time that is necessary to complete GA-PSO-

Min (also referred to as GAPSO) and Min-Min. Furthermore, this reveals that GA-PSO-Min is superior 

than Min-Min on a constant basis. In the case of the compute-intensive high-high scenario (c_hihi), for 

example, GA-PSO-Min was able to achieve a completion time of 227.65 units, which is a drop of about 

4.25% in comparison to the completion time of Min-Min, which was 237.75 units. In the I/O-intensive 

low-low scenario (i_lolo), GA-PSO-Min made a considerable improvement to the completion time by 

decreasing it from 30,258,306.9 units to 29,064,893.5 units. This represents an improvement of about 

3.94%. The figures 4 through 5 provide a graphical representation of a comparison of the completion 

times across all of the instances. It is evident that GA-PSO-Min consistently plots below Min-Min, 

which exemplifies the performance advantage that it has.  

Table 4. All states and all distributed environments 

Instance Min-min GAPSO 

c_hihi 237.75 227.65 

c_hilo 1411 1319.55 

c_lohi 2182578.65 2052542.3 

c_lolo 12854160.55 11874263.4 

i_hihi 487.3 476 

i_hilo 3265.4 3157.05 

i_lohi 4456769.5 4310440.35 

i_lolo 30258306.9 29064893.5 

p_hihi 306 296.35 
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p_hilo 1890.1 1754 

p_lohi 2759795.95 2631302.05 

p_lolo 17113178.8 16173294.95 

Figure 4.a illustrates the performance comparison between GA-PSO-Min and the Min-Min heuristic in 

scenarios with both heterogeneous tasks and virtual machines (VMs), specifically the high-high (hihi) 

instances across compute-intensive (c_hihi), I/O-intensive (i_hihi), and mixed (p_hihi) workloads. A 

cursory examination of the graph indicates that the total amount of time required to do the assignment 

is shown in arbitrary units, and that GA-PSO-Min consistently displays values that are lower than those 

of the other two choices. A comparison is made between the Min-Min technique, which reaches 237.75 

units, and the GA-PSO-Min algorithm, which is able to obtain 227.65 units in c_hihi. This is 4.25% 

lower than the accomplishment that the Min-Min algorithm accomplishes. The purpose of this visual 

representation is to demonstrate how GA-PSO-Min is able to adapt to a significant degree of change in 

the requirements of tasks and the capabilities of virtual machines. This capability is shown by the fact 

that it is able to get used to new circumstances. On the other hand, this stands in stark contrast to the 

static approach that Min-Min often uses, which seems to be experiencing some difficulties. The figure 

illustrates the remarkable capability of the hybrid algorithm to optimize makespan under circumstances 

that are comparable to those that are encountered in the real world. The fact that this is the case illustrates 

that the approach is suitable for use in dynamic cloud systems that have a broad diversity of resource 

profiles. This is shown by the fact that this is the case.  
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Figure 4. (a). Make span comparison for heterogeneous tasks and machines environments, (b). Make span 

comparison for heterogeneous tasks and homogeneous machines environments 

Figure 4.b presents a comparison whereby the makespan of GA-PSO-Min and Min-Min are compared 

to one another. For the purpose of this study, high-low (hilo) scenarios are used. These scenarios are 

distinguished by the presence of diverse jobs but homogeneous virtual machines (VMs). There are three 

distinct kinds of workloads that are covered in these scenarios: compute-intensive (c_hilo), input/output-

intensive (i_hilo), and mixed (p_hilo). It can be deduced from this figure that GA-PSO-Min is successful 

even in circumstances in which the capabilities of the virtual machine (VM) stay same, but the needs of 

the work undergo significant changes. An example of this may be seen in the figure, which illustrates 

that the implementation of GA-PSO-Min leads to a decrease in completion times in c_hilo from 1411 to 

1319.55 units, which is an improvement of 6.5%. The purpose of this comparison is to demonstrate that 

the algorithm has the potential to perform better than Min-Min's greedy assignments. In order to 

accomplish this objective, we will be able to make advantage of the capabilities of local refining and 

global search that are provided by PSO and GA, respectively. In the case that both of these strategies 

are used, it is not something that is entirely out of the question that this task will be finished in an efficient 

manner without any issues occurring.  

The diverse character of the activities that need to be completed is the key factor that adds to the 

complexity of the scheduling process. This is particularly true in situations when the complexity of the 

scheduling process is brought about by the primary cause. When it comes to cloud systems that are 

equipped with standardized hardware and are given with a broad choice of job profiles when they are 

engaged, the GA-PSO-Min is a great solution to take into consideration. According to the picture, GA-

PSO-Min is one of the solutions that provides the highest possible degree of flexibility that is now 

available on the market. At the moment, this is the only available choice that consumers can choose.  
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Figure 5. (a). Makespan comparison for homogeneous tasks and heterogeneous machines environments, (b). Make 

span comparison for homogeneous tasks and machines environments 

Figure 5.a, which includes workloads that are compute-intensive (c_lohi), I/O-intensive (i_lohi), and 

mixed (p_lohi), presents a comparison of makespan for low-high (lohi) situations. This comparison is 

displayed in the figure. Virtual machines, often known as VMs, have characteristics that vary depending 

on the environment in which they are used, despite the fact that the tasks they do are equivalent. The 

graph illustrates that GA-PSO-Min is capable of achieving significant reductions, such as lowering the 

number of units in c_lohi from 2,182,578.65 to 2,052,542.3. This is a remarkable improvement of 5.95%, 

as seen by the graph. The graphic that you are now seeing is an illustration of how the algorithm is able 

to improve resource allocation in situations when the performance of virtual machines (VMs) vary 

dramatically. This is a common problem that arises in cloud data centers, which often include hardware 

generations that are already incompatible with one another. A visual comparison of the performance of 

GA-PSO-Min and that of Min-Min is shown in order to illustrate how the hybrid technique helps to 

reduce inefficiencies that are associated with static scheduling. When applied to situations such as these, 

this method provides superior load balancing and optimization of completion time capabilities.  

The comparison of makespan for low-low (lolo) situations is shown in Figure 5.b. In these scenarios, 

both tasks and virtual machines (VMs) are homogenous. The workloads that are included in this 

comparison are compute-intensive (c_lolo), I/O-intensive (i_lolo), and mixed (p_lolo).The graph 

illustrates the consistent advantage that GA-PSO-Min has, which has led to a significant decrease in 

completion times. The number of units in c_lolo has increased from 12,854,160.55 to 11,874,263.4, 

which is a 7.62% improvement. In i_lolo, the number of units has increased from 30,258,306.9 to 

29,064,893.5, which is a 3.94% improvement. According to this figure, even in cases when the simplicity 

of Min-Min may seem to be sufficient, the iterative optimization of GA-PSO-Min delivers better results. 

This is the case even in instances where the Min-Min algorithm is used. Specifically, it emphasizes the 

flexibility of the algorithm by emphasizing that its hybrid design gives benefit across all types of 

workloads, particularly in large-scale, predictable settings that are typical of standardized cloud 

deployments. This is a significant point of emphasis. 

As can be seen in the figures, the GA-PSO algorithm is superior than the Min-Min algorithm in every 

circumstance. In point of fact, by merging these two algorithms, we have created an algorithm that has 

two qualities. This algorithm allows us to vary the effect of each algorithm by adjusting the amount of 

internal repetitions that each algorithm has.  

Comparison with Other Methods 

The findings demonstrate that GA-PSO-Min performs better than Min-Min in every situation that was 

experimented with. The reductions in total completion time range from 2% to 7%, depending on the 

kind of task and the variability of the job. We compared GA-PSO-Min to two sophisticated approaches 

that have been published in recent years. A few examples of these methods are MPPSO [24], which is a 

modified parallel PSO algorithm, and IVPTS [15], which is a fuzzy meta-heuristic with PSO for QoS-

aware scheduling. Both of these methods are examples of approaches that are described in the previous 

sentence. These two algorithms are samples of the methodologies that are being discussed here.  
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We intended to give more proof that GA-PSO-Min is effective, and that was our aim. In accordance 

with the findings of research carried out using CloudSim, it has been shown that the MPPSO algorithm 

places an emphasis on execution time, makespan, and throughput. In addition to this, it has been proved 

to reduce the production time by as much as sixteen percent. On the other side, the IVPTS algorithm 

focuses on makespan, energy, and reliability, and it has shown eleven to thirteen percent reductions in 

makespan. By incorporating these strategies into our Contiki Cooja system, we were able to carry out 

an objective comparison, which was the very first thing we wanted to do. In every one of the twelve 

different situations, we used the identical configuration, which included 512 tasks and sixteen virtual 

machines throughout the whole process.  

A comparison of the makespan for three typical cases is shown in Table 5. These instances are c_hihi 

(compute-intensive, high heterogeneity), i_lolo (I/O-intensive, low heterogeneity), and p_hilo (mixed, 

moderate heterogeneity). Despite falling short of IVPTS (210.50, which is an 11.5% increase over Min-

Min) and somewhat lagging MPPSO (225.30, which is a 5.3% improvement), GA-PSO-Min obtains 

227.65 units in c_hihi, exceeding Min-Min (237.75) by 4.25%. In i_lolo, GA-PSO-Min scored 

29,064,893.5 units, which is 3.94% higher than Min-Min (30,258,306.9) and MPPSO (29,351,157.6, 

which is a 3.0% increase), while IVPTS scored 26,732,461.2, which is 11.6% higher than Min-Min. The 

GA-PSO-Min (1754) algorithm outperforms the Min-Min (1890.1) algorithm by 7.2% and MPPSO 

(1802.5, 4.6%), despite the fact that IVPTS is once again in the lead with 1710.8 (9.5%). Despite the 

fact that GA-PSO-Min provides constant advantages over Min-Min, the improvements it provides are 

not as significant as those offered by IVPTS, which makes use of fuzzy logic to provide wider 

optimization, and they are comparable to those offered by MPPSO, which takes use of the efficiency 

offered by parallel PSO. On the other hand, the hybrid design of GA-PSO-Min is more fundamental, 

and it does not rely on task linkages or sophisticated frameworks. This creates a practical benefit for the 

system. Therefore, it is possible to find a balance between performance and computing feasibility, which 

is a trade-off that implies that its application is more likely to occur in settings that comprise discrete 

operations. This advantage allows it to find a balance between performance and computational 

feasibility.  

Table 5. Makespan Comparison with Advanced Methods Across Selected Scenarios 

Instance Min-Min GA-PSO-Min MPPSO [24] IVPTS [15] 

c_hihi 237.75 227.65 225.30 210.50 

i_lolo 30,258,306.9 29,064,893.5 29,351,157.6 26,732,461.2 

p_hilo 1890.1 1754 1802.5 1710.8 

Strengths and Weaknesses 

Strengths: GA-PSO-Min’s primary strength is its consistent improvement in total completion time 

across diverse workloads, as evidenced by Table 1 and Figures 4–5. It is possible for us to shift the 

equilibrium between exploration and exploitation by adjusting the number of PSO and GA rounds. This 

gives us the ability to tailor performance to certain cloud conditions. A flexible architecture is provided 

by the hybrid architecture. By seeding utilizing Min-Min, which decreases the amount of time needed 

for runtime in comparison to entirely random initialization, a good starting point is given. This is in 

contrast to completely random initialization. One benefit that is applicable to deployment in the actual 

world is the fact that this is a practical advantage. Because it is possible to establish the scalability of the 

technique by seeing its effectiveness in large-scale instances (for example, i_lolo and p_lolo), it is ideal 

for use in contemporary cloud data centers. This is because the approach can be demonstrated to be 

scalable.  

Weaknesses: Due to the twin PSO-GA phases, GA-PSO-Min provides extra complexity over Min-Min. 

This complexity has the potential to increase computing overhead in situations when Min-Min is 

sufficient, such as when the situation is largely predictable or on a small scale. Because of the 

dependence on parameter modification (for instance, w, c1, c2, crossover/mutation rates), optimal design 

may also need expertise. This provides a challenge for users who do not have any previous experience 

with the system. Due to the fact that other quality of service indicators, such as energy use or fairness, 

were not studied, the scope of the insights that can be acquired from this study is limited. This is despite 

the fact that the total completion time has been significantly cut down. 
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Expanding Metrics - Energy Consumption 

In order to widen the scope of the study, we assessed the total completion time in addition to the energy 

consumption, as we recognized the significance of this factor in environmentally responsible cloud 

computing. In the beginning, the energy was calculated by using a simplistic model, which was denoted 

as . A decision was made that the constant power, denoted by , would be established at a value of one 

hundred watts for each virtual machine, and the overall completion time, denoted by , would be 

calculated by using Table 5. This fixed-power assumption, on the other hand, oversimplifies the real-

world variability, which is that the power consumption of virtual machines (VMs) varies with load and 

hardware (for example, between 50 and 200 watts, as depicted in 15, 25). This assumption causes an 

oversimplification of the real-world variability. The concept that virtual machines (VMs) always use the 

same amount of power is the foundation for this assumption. We broadened our study in order to find a 

solution to this problem. We did this by forecasting energy bounds by using a range of values that 

represented real virtual machine profiles. These values ranged from 50W for idle operation to 150W for 

average load. The revised estimates for each of the scenarios are shown in Table 6, and Figure 6 has 

been revised to represent the changes in energy measured in megajoules ().  

For instance, in c_hihi, Min-Min’s energy ranges from 11,887.5 J (50W) to 35,662.5 J (150W), while 

GA-PSO-Min ranges from 11,382.5 J to 34,147.5 J, yielding savings of 4.25% across the range. In i_lolo, 

Min-Min consumes 1,512,915,345 J to 4,538,746,035 J, versus GA-PSO-Min’s 1,453,244,675 J to 

4,359,734,025 J, a consistent 3.94% reduction. These bounds highlight GA-PSO-Min’s energy 

efficiency potential, though still modest compared to IVPTS’s reported 5–15% savings [15], which uses 

dynamic power modeling. The fixed 100W results (Table 5) align proportionally with completion time 

reductions, but the revised range better captures practical implications. Future work will incorporate 

detailed power simulations, integrating variable models (e.g., ) to align with industry standards and 

validate these preliminary findings. 

Table 6. Total Completion Time and Energy Consumption Across All Distributed Environments 

Instance Min-Min (50W, J) Min-Min (150W, J) GA-PSO-Min (50W, J) GA-PSO-Min (150W, J) 

c_hihi 11,887.5 35,662.5 11,382.5 34,147.5 

c_hilo 70,550 211,650 65,977.5 197,932.5 

c_lohi 109,128,932.5 327,386,797.5 102,627,115 307,881,345 

c_lolo 642,708,027.5 1,928,124,082.5 593,713,170 1,781,139,510 

i_hihi 24,365 73,095 23,800 71,400 

i_hilo 163,270 489,810 157,852.5 473,557.5 

i_lohi 222,838,475 668,515,425 215,522,017.5 646,566,052.5 

i_lolo 1,512,915,345 4,538,746,035 1,453,244,675 4,359,734,025 

p_hihi 15,300 45,900 14,817.5 44,452.5 

p_hilo 94,505 283,515 87,700 263,100 

p_lohi 137,989,797.5 413,969,392.5 131,565,102.5 394,695,307.5 

p_lolo 856,658,940 2,569,976,820 808,664,747.5 2,425,994,242.5 

These initial results suggest that GA-PSO-Min reduces both completion time (by 2–7%) and energy 

consumption proportionally across all scenarios. One example of this is the fact that the GAPSO is 

capable of reaching 22,765 Joules in c_hihi, which is 4.25% higher than the value of 23,775 Joules that 

Min-Min is able to attain. Until more study has been carried out, it has been agreed that the completion 

of simulations that take into account variable power models will be postponed because of this decision. 

The preliminary energy estimates are in accord with the reductions in completion time, which are based 

on the premise that the power would remain relatively constant. This is because energy savings 

immediately reflect reduced fabrication times. GAPSO, for instance, is capable of conserving around 98 

million Joules in c_lolo and approximately 119 million Joules in i_lolo, therefore highlighting its 

potential for energy-efficient scheduling procedures. While these findings are encouraging, it is 

important to note that they are based on oversimplified assumptions (a constant power of 100W). These 

estimations will be refined in subsequent studies by include more realistic power profiles and other 

quality of service criteria. Figure 6 and 7 are examples of the sensitivity of and energy consumption 

trends, respectively. These figures were derived from preliminary data correspondingly. While Figure 6 

illustrates the relationship between completion time and values (0.5–0.9) in c_hihi, Figure 7 illustrates 
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the comparison of energy consumption across all scenarios in megajoules (MJ).  
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Figure 6. Completion Time vs. Inertia Weight (w) in c_hihi Scenario 

Figure 6 examines the degree to which the performance of GA-PSO-Min is affected by the PSO inertia 

weight (w) in the compute-intensive high-high (c_hihi) scenario. This is accomplished by graphing 

completion time against w values that range from 0.5 to 0.9 throughout the simulation. At the selected 

w=0.7, the completion time is 227.65 units, while w=0.5 increases it to approximately 235 units (a 3.2% 

rise) and w=0.9 to 234 units (a 2.8% rise). This graph illustrates that w=0.7 strikes an optimal balance 

between exploration and exploitation, minimizing convergence delays and excessive divergence. The 

figure provides critical insight into parameter tuning, showing how slight deviations impact efficiency, 

and supports the robustness of the chosen configuration, though it also flags the need for further 

sensitivity analysis across all scenarios.  
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Figure 7. Energy Consumption Comparison Across All Scenarios (in Megajoules) 

Figure 7 compares the preliminary energy consumption of GA-PSO-Min and Min-Min across all twelve 

scenarios, expressed in megajoules (MJ), based on a simplified model (E=P⋅T, P=100W). The graph 

shows proportional energy savings mirroring completion time reductions—e.g., from 23.775 MJ to 

22.765 MJ in c_hihi (4.25% less) and from 3025.831 MJ to 2906.489 MJ in i_lolo (3.94% less). This 

visual comparison highlights GA-PSO-Min’s potential for energy efficiency, a vital consideration in 

cloud computing, despite the fixed power assumption’s limitations. The figure bridges performance and 

sustainability, suggesting that the algorithm’s makespan improvements translate to operational cost 

savings, though it emphasizes the need for future work with dynamic power models to refine these 

estimates.  

DISCUSSION 

The experimental results of this study underscore the efficacy of the GA-PSO-Min algorithm in 

addressing the complexities of job scheduling within dynamic cloud environments. Across twelve 

diverse scenarios—spanning compute-intensive, I/O-intensive, and mixed workloads—GA-PSO-Min 

consistently outperformed the Min-Min heuristic, reducing total completion time by 2–7%, as detailed 

in Table 5 and visualized in Figures 4–5. This improvement stems from the hybrid architecture, which 
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capitalizes on Min-Min’s efficient initial solution, PSO’s rapid local optimization, and GA’s robust 

global exploration. For instance, in the compute-intensive high-high (c_hihi) scenario, GA-PSO-Min 

reduced completion time from 237.75 to 227.65 units (a 4.25% improvement), while in the I/O-intensive 

low-low (i_lolo) case, it achieved a 3.94% reduction (from 30,258,306.9 to 29,064,893.5 units). These 

gains highlight the algorithm’s adaptability to varying task-VM interactions, a critical advantage over 

Min-Min’s static, greedy approach, which struggles with high heterogeneity and large-scale workloads. 

This adaptability positions GA-PSO-Min as a promising solution for modern cloud systems, where 

resource states and user demands fluctuate unpredictably. 

One of the key strengths of GA-PSO-Min lies in its multi-objective optimization framework, which 

departs from the single-criteria focus of traditional initiatives such as Min-Min. While Min-Min excels 

in static environments due to its simplicity and low computational overhead (O(n⋅m)), it lacks the 

flexibility to handle dynamic conditions effectively. In contrast, GA-PSO-Min’s integration of PSO and 

GA steps allows it to iteratively refine solutions, balance local and global searches, and achieve superior 

results. Initializing the population with a Min-Min solution accelerates convergence and reduces the 

high computational cost associated with evolutionary algorithms. This is evident in the algorithm’s 

scalability on large samples (e.g., c_lolo and p_lolo), where reductions of approximately 7% and 5.5% 

were observed. However, the increased time complexity of O(k⋅P⋅n⋅m) - resulting from the population 

size (P=30) and iterations (k=100) - represents a trade-off, suggesting that the benefits of GA-PSO-Min 

are more pronounced in complex and dynamic scenarios than in small, predictable workloads where 

Min-Min may suffice.  

The preliminary energy consumption analysis further enhances the practical relevance of GA-PSO-Min, 

demonstrating proportional savings aligned with completion time reductions. Using a simplified power 

model (E=P⋅T, with P=100W), energy use dropped by 4.25% in c_hihi (from 23,775 to 22,765 Joules) 

and by up to 4% in i_lolo (from 3,025,830,690 to 2,906,489,350 Joules), as shown in Table 6 and Figure 

6. These findings suggest that GA-PSO-Min not only improves performance but also contributes to 

energy efficiency—a critical concern in cloud data centers facing rising operational costs and 

environmental pressures. However, the fixed 100W assumption limits the granularity of these estimates, 

as real-world VMs exhibit variable power profiles based on load and hardware. This simplification 

underscores a limitation: while promising, the energy results are exploratory, and future work must 

incorporate dynamic power models to validate these savings comprehensively across diverse cloud 

configurations. 

Parameter sensitivity analysis reinforces the robustness of GA-PSO-Min, with the inertia weight (w=0.7) 

identified as an optimal balance between exploration and exploitation, as depicted in Figure 7. Variations 

to w=0.5 or w=0.9 increased completion time by 3.2% and 2.8%, respectively, in the c_hihi scenario, 

indicating that the chosen setting minimizes convergence delays while avoiding excessive divergence. 

This tunability—extending to GA crossover (0.8) and mutation (0.1) rates—offers flexibility, allowing 

practitioners to adapt the algorithm to specific workload characteristics. Yet, this strength doubles as a 

weakness: optimal performance relies on careful parameter calibration, which may deter users without 

expertise. Compared to prior methods like TSO-MCR [39] (4.23–8.93% makespan improvement) or 

IVPTS [15] (11–13% makespan reduction), GA-PSO-Min’s gains are modest but achieved with a 

simpler, more interpretable hybrid design, avoiding the complexity of fuzzy frameworks or extensive 

heuristic suites seen in other studies. 

When benchmarked against the broader landscape of recent scheduling algorithms (Table 7), GA-PSO-

Min stands out for its focus on total completion time without task dependencies, contrasting with 

dependency-aware methods like DRL-Cloud [28] or MADRL [32]. Unlike HunterPlus [30] or DeepRM 

Plus [31], which prioritize energy or turnaround time via reinforcement learning, GA-PSO-Min 

leverages heuristic simplicity and evolutionary power, achieving competitive results without the training 

overhead of deep learning approaches. Its performance edge over Min-Min aligns with trends in hybrid 

optimization (e.g., DPSO-GA [33]), but its unique Min-Min seeding distinguishes it, enhancing 

convergence speed—a feature absent in most counterparts. Nonetheless, the absence of real-world 

dataset validation (unlike DeepRM Plus) and limited QoS metric evaluation (e.g., cost, fairness) mark 

areas for improvement, aligning with gaps noted in systematic reviews [19, 21, 23]. 
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In summary, GA-PSO-Min advances cloud scheduling by offering a scalable, adaptable, and energy-

aware solution that outperforms Min-Min across diverse scenarios. Its hybrid design bridges the gap 

between static heuristics and complex evolutionary methods, delivering practical benefits for cloud 

providers managing large-scale, dynamic workloads. However, its higher computational cost and 

reliance on parameter tuning suggest it is best suited for environments where performance gains 

outweigh overhead. The preliminary energy savings hint at broader potential, but their validation 

requires more sophisticated modeling. Future refinements—such as integrating additional QoS 

objectives, testing on real cloud platforms, and automating parameter optimization—could elevate GA-

PSO-Min from a promising heuristic to a cornerstone of next-generation cloud scheduling. 

Table 7. Comparison of proposed algorithms with existing approaches 

Algorithm Task 

Dependencies 

Reward Objectives Simulation 

Tool 

Dataset 

Type 

Compared Algorithms 

TSO-MCR [39] Yes Terminal Makespan, Cost, Reliability Not specified Synthetic 

(Scientific 
workflows, 

random 
apps) 

MOHEFT, CMSWC, 

HDCSA, MOBFD 

IVPTS [15] No Terminal Makespan, Energy, 

Reliability 

Not specified Synthetic ELBA, ERA, GWO, 

PSO 

Improved Hyper-
Heuristic [40] 

Yes Terminal Solution Quality, 
Computation Time 

Not specified Synthetic 
(Small-to-

large scale 

instances) 

Gurobi, five baselines 

AWCO [17] No Terminal Cost, Makespan, Load 
Balancing 

Not specified Synthetic 
(CEC2014) 

WCO, other meta-
heuristics 

MO-IBWO-Ring 

[41] 

No Terminal Makespan, Costs Not specified Synthetic 

(HCSP, 
random 

tasks) 

DN-NSGAII, 

MO_Ring_PSO_SCD, 
Omni-optimizer, 

MOPSO 

MPPSO [24] No Terminal Execution Time, Makespan, 

Throughput 

CloudSim Synthetic PPSO, MPSO 

ADB [25] Yes Terminal Makespan, Cost, Energy, 

Resource Utilization 

Workflowsim Synthetic 

(Scientific 

workflows) 

State-of-the-art 

methods 

DRLBTSA [29] No Terminal Energy, SLA Violations, 
Makespan 

CloudSim Synthetic * Round Robin, FCFS, 
Earliest Deadline First, 

RATS-HM, MOABCQ 

HunterPlus [30] No Terminal Makespan, Energy COSCO Synthetic GGCN, Bidirectional 
GGCN 

DeepRM 

Plus [31] 

No Terminal Turnaround Time, Cycling 

Time 

Custom 

(Python, 
TensorFlow) 

Real-World Random, FCFS, SJF, 

HRRN, Tetris, 
DeepRM 

MADRL [32] Yes Terminal Energy Efficiency, Time CloudSim Synthetic Random, Greedy, 

Common-Actor 

DPSO-GA [33] No Terminal Waiting Time, Task 

Migration, Response Time, 

Task Running Time 

CloudSim Real-World GA, PSO 

Proposed 

Algorithm 

No 

 

Terminal 

 

Total Completion Time, 

Energy Consumption 

Contiki 

Cooja 

Synthetic Min-Min 

GA-PSO 

According to Table 7, recent cloud computing task scheduling approaches mainly focus on multiple 

objectives such as makespan, energy consumption, cost, and quality of service (QoS). Still, many suffer 

from high computational complexity or are limited to specific scenarios. For example, methods such as 

TSO-MCR [39] and ADB [25] rely on task dependencies, which makes them suitable for complex 

workflows, while IVPTS [15] and AWCO [17], although they deal with independent tasks, lack specific 

simulation tools and rely on synthetic datasets. In contrast, our proposed GA-PSO-Min algorithm offers 

an excellent balance between performance and usability. Integrating genetic algorithms (GA), particle 

swarm optimization (PSO), and Min-Min achieve a 2–7% reduction in overall completion time 

compared to the Min-Min baseline, as validated in various synthetic scenarios using the Contiki Cooja 

simulator. Unlike methods such as MO-IBWO-Ring [41] or MPPSO [24], which require extensive 

computational resources or lack energy efficiency considerations, GA-PSO-Min provides a scalable and 

energy-aware solution with manageable complexity O(k⋅P⋅n⋅m). Furthermore, its compatibility with 

dynamic cloud environments without the need for task dependencies makes it a more versatile and 

efficient choice compared to dependency-based methods, improving existing approaches in both 

performance and usability.  
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CONCLUSION AND FUTURE WORKS  

This paper presents a unique heuristic approach called GA-PSO-Min. This technique combines genetic 

algorithms (GA), particle swarm optimization (PSO), and the Min-Min strategy. This algorithm aims to 

improve task scheduling in a dynamic cloud environment with variable resources. Our simulations, 

which included twelve different scenarios, shown in Table 5 and Figures 4-5, show that the GA-PSO-

Min heuristic consistently outperforms the Min-Min heuristic. The reduction in the total time required 

to complete tasks varied between two and seven percent to achieve this result. To tackle the problem of 

mapping tasks to virtual machines (VMs), which is a process that gets more difficult to carry out as the 

number of resources and tasks rises, we were successful in overcoming the obstacle. We took these steps 

to address the problem. The initial population was seeded with a Min-Min solution, the quick 

convergence of PSO was performed, and the global optimization of GA was deployed in order to achieve 

this target. We carried out all these activities to achieve the desired results. When the data are taken into 

consideration, it would appear that our hybrid strategy has the potential to effectively cut down on the 

overall amount of time that is required to complete the task without sacrificing its capacity to expand in 

an acceptable fashion. Using heuristic We conducted a comprehensive comparison using benchmarks, 

and the results substantiated this claim. This has led to a reduction in the task's completion time, making 

it shorter. This indicates that we have achieved the desired outcome. This validation suggests that our 

hybrid strategy is useful in the administration of cloud resources in a variety of different situations. This 

is because it demonstrates how essential our hybrid approach is, which provides evidence of its 

significance. The relevance of these results resides in the fact that they have the potential to be used in 

cloud computing environments. In these kinds of settings, effective scheduling and resource 

management are crucial to the overall efficiency of the system. Scheduling solutions need to be both 

flexible and efficient in order to accommodate cloud resources, which are dynamic, optional, and subject 

to change. This is due to the fact that cloud resources are always subject to change. GA-PSO-Min 

satisfies this criterion by adding improvements to Min-Min and other approaches that are already in use. 

The cloud service providers that are in charge of managing massive projects that are time-sensitive are 

able to boost their system throughput and the level of pleasure that their customers feel as a consequence 

of this decrease in completion time. Because of the flexibility of our technology, which enables 

modifications to be made to the proportions of GA and PSO iterations, we are able to provide a flexible 

framework that can be used to address specific cloud situations. This framework has the potential to be 

used in order to enhance the efficiency of our algorithm. The fact that our method is also able to 

accommodate a wide range of cloud configurations is a big benefit that we provide. This aspect of our 

algorithm shows that it is a significant contribution to the field. As a result of the fact that GA-PSO-Min 

performs more efficiently than exploratory heuristics, it is possible that it is capable of functioning as a 

standardized solution inside cloud scheduling frameworks.  

Despite the fact that this study effectively exhibits the benefits of GA-PSO-Min, which include a 

reduction in completion time of up to 7% and a reduction in energy consumption of up to 4.25% in early 

testing, there are still other possibilities that need to be explored. To begin, it is feasible that expansion 

of the assessment to include other quality of service indicators, such as cost, fairness, and throughput, 

might result in the production of a more complete performance profile, therefore overcoming the limits 

that are now in place. To improve the capability of responding to unpredictability in resource 

fluctuations, the second suggestion is to include more complicated methodologies, such as fuzzy logic 

or neural networks. This would be done in order to raise the capacity to react. This would be done by 

building on our hybrid architecture. Third, it is essential to validate GA-PSO-Min on real-world cloud 

platforms (such as Amazon Web Services and Microsoft Azure) by using actual workload traces (such 

as Google Cluster Data). This is particularly important in order to establish its practical scalability and 

efficiency beyond synthetic simulations, which is a crucial gap that was mentioned in Section 4.5. Last 

but not least, increasing its utilization might be done by reducing the amount of computational work that 

is required in small-scale settings via the use of automated parameter modification or lightweight 

alternatives. This would be a significant step toward achieving the goal of increasing its utilization. It is 

the intention of these instructions to enhance and amplify the impact of GA-PSO-Min in order to 

contribute to the development of cloud scheduling innovation. It is for this reason that these instructions 

have been provided.  
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