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ABSTRACT 

This paper derives a novel direct model predictive based power controller (DMPPC) for renewable energy 

systems (RES) to address voltage fluctuations caused by varying power demands and renewable source 

outputs. This method utilizes the bi-directional DC-DC converter in the Battery Energy Storage (BES) 

System to level the renewable energy output, also maintain DC bus voltage stability, with the assistance 

of fuzzy decision making. Based upon grid necessities and the BES system’s state of charge, the controller 

controls an AC/DC interlinking converter to ensure consistent AC potential and appropriate power 

exchange with the utility grid. This paper presents an enhanced model predictive controller with an 

objective function based on fuzzy objectives and limitations that dynamically adapts to external 

circumstances, instead of utilizing a layered control structural design for BES planning and grid control. 

With the aid of simulation models created with Matlab Simulink, the suggested controller's operability is 

confirmed. This approach demonstrates excellent reference tracking performance with minimal Total 

Harmonic Distortion (THD) with both non-linear as well as linear loads. This article presents the 

development of a basic hybrid microgrid prototype.  

Key words: renewable energy systems, direct model predictive based power controller, battery energy 

systems, fuzzy, total harmonic distortion 

INTRODUCTION 

Interest in renewable energy source (RES) based generation technologies, like grid-connected solar and 

wind turbines, has increased recently [10]. Grid-connected inverters are essential components of 

distributed energy systems [13]. Therefore, inverter control is crucial in ensuring the effective operation 

of grid-tied inverter systems. Integrating technical innovations with financial strategies can enhance 

power generation through a hybrid system [8][30]. The system incorporates a diverse range of renewable 
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energy sources alongside storage solutions. Hybrid wind, solar and battery systems are showing their 

appeal and affordability for both off-grid and utility-connected applications.[1][2]. 

Hybrid AC/DC microgrids have recently seen a surge in interest due to the growing deployment of DC 

sources, alongside concerns about the aging AC power infrastructure that has been in place for over a 

century. These kinds of microgrids typically use cascading inner current as well as outer voltage loop 

connections with PID controllers to regulate DC to DC converters as well as AC/DC interlinking circuits 

[3]. Modifications to the AC-DC switching circuit ensure a consistent frequency and voltage during 

island mode of the AC sub-grid, while a bidirectional DC-DC converter serves as a voltage regulator for 

the DC link. Both the utility and the microgrid exchange power with a constant DC-link voltage in grid-

operated mode, facilitated by the AC-DC interlinking converter [4][23]. 

Within the hybrid PV/wind/battery production system, the primary causes of electrical power quality 

issues are harmonic generation, voltage fluctuations, and frequency fluctuations. In fact, non-linear 

components such as power converters and loads are the primary causes of harmonics. In addition, 

changes in methodical issues conditions and network disturbances are the main causes of fluctuations in 

voltage and frequency [5][31]. Creating the right control regulations over power converters within 

hybrid systems is one method to solve these concerns. 

While utilized as spinning reserve, storage systems are primarily added to mix of energy in order to 

address such stability concerns. They store energy produced by wind and solar power plants during off-

peak hours and assist in voltage as well as frequency adjustment at the point of common coupling (PCC). 

In addition, energy storage is employed to reduce peak load and enable black-start. Since battery energy 

storage systems (BESS) can quickly adjust to offset the dynamic discrepancies in electricity production 

and consumption, they have shown to be a practical solution in dealing with such challenges [27][28]. 

Fleets of combined electric vehicles (EVs) have the capacity to function as BESSs as well. 

Complex control techniques can now be implemented thanks to advancements in processing power. One 

such promising control method is model predictive control (MPC), which can be used with systems that 

have accurate mathematical models [9],[29][7][17]. A linear mathematical model can simulate the 

functioning of a typical VSC, making MPC control a more appropriate option. On the other hand, human 

knowledge is used to define control objectives and commands in fuzzy control established on fuzzy 

based decision making (FDM), which eliminates the need for a mathematical model. Because of large 

parameter variations and a dearth of necessary data, the majority of real-life circumstances are difficult 

to mathematically model and instead relying on estimates or generalizations [25]. FLC necessitates a 

solid qualitative grasp of the plant, and the controller's goal is to mimic human thought processes and 

reasoning. Recent advances in artificial intelligence-based evolving rules and data clustering have made 

it possible to derive fuzzy inference [11][14][12]. 

A fuzzy based gain scheduling pattern to the PID controller is presented in [15] in order to enhance the 

PV farm's transient performance. Fuzzy-MPC control applies to complex and dynamic control systems 

by combining traditional MPC and FDM [16][18]. Fuzzy based MPC controllers could be utilized to 

design the objective functions of MPC with multiple conditions FDM or for systems with non-linear 

models [19]. A fuzzy logic modelled duty cycle modulation procedure for enhanced (MPDPC) is 

proposed by the authors of [20][21]. Certain systems necessitate distinct control over the elements of 

the function in order for the extent of influence to fluctuate dynamically in response to experience-

backed human knowledge. 

In this paper mainly the concept of FDM based predictive control for grid-connected converter control 

and the examination of its applicability in automatically controlling the converter to regulate a BESS's 

bidirectional power flow in accordance with dynamic system conditions is established [22][24]. In the 

MATLAB Simulink environment, a fuzzy-DMPPC structure is proposed and its performance is 

analytically demonstrated [26][6]. Section II discusses the proposed circuit and its switching states. 

DMPPC for the specific system is developed and its integration with fuzzy is briefed in section III. 

Section IV illustrates the outcomes of the simulation, while Section V provides a summary of the 

findings. 
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Figure 1. Circuit Schematic of the Proposed Design  

CONFIGURATION OF THE CIRCUIT PROPOSED 

One type of multilevel inverter that is frequently used in various applications is the 3-φ, Diode clamped 

three level inverter. The block diagram of the proposed topology is shown in Figure 1, which utilizes a 

twelve-device switching circuit employing six clamping diodes (Figure 2). These components are 

combined to create twelve distinct active voltage vectors by configuring the switching states in various 

ways. The sector is identified using a three-phase reference voltage to generate the gating signals 

necessary for operating the inverter. Subsequently, the appropriate vector voltages are selected from the 

table of switching states. 

The SVMT method refers to digital modulating procedure that generates PWM according to the vector 

illustration. These digital signals are delivered straight to switches that are vector representation-

managed. The vectors have been organized in the shape of a hexagon to represent the phases and 

magnitudes of every vector. The SVMT, which is denoted by the α-β axis, is the conventional approach. 

Three phase voltages that are balanced can be represented by two phase voltages. The coordinate 

transformation of d-q out of a-b-c can be produced using equations (1) and (2) that follow. 

Vq =  
2

3
 (Va −  

1

2
 (Vb +  Vc))     (1) 

Vd =  
1

√3
 (Vb − Vc)      (2) 

 

Figure 2. Circuit Configuration Proposed 
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Using the line voltage as a reference, Equations (3) and (4) facilitate the transformation of RMS voltage 

from three-phase to d-q (two-phase) parameters. 

Viq =  √
3

2
 Vq       (3) 

Vid =  √
3

2
 Vd       (4) 

θ =  tan−1 (
Vid

Viq
)       (5) 

The reference voltage’s angular position can be evaluated through Equation (5). An inverter consisting 

of three levels divides each cycle into 27 sectors. The switching table is constructed using the divided 

sector, the associated potential vector, and the switching state. For example, in sector 2 reference voltage 

picks the vector voltage V2. The associated switching pattern is represented as (0-1-0-1-0-1). In this 

work, the conventional α-β approach is applied. The axes of β and α are respectively positioned along 

0° and 90°. The reference voltage is provided by the following equation (6). Table 1 provides a summary 

of the different states. Here CMV indicates the Common Mode Voltage VCMV= (Vao+ Vbo + Vco)/3 

V𝑟𝑒𝑓 =  
2

3
 (Va +  α 𝑉𝑏 +  𝛼2 𝑉𝑐)    (6) 

Table 1. Representation of Various Switching States 

          Sector Voltage vector CMV State of Switches  

Sa1 Sa2 Sb1 Sb2 Sc1 Sc2 

1 V1 Vdc/2 1 1 1 1 1 1 

2 V2 0 0 1 0 1 0 1 

3 V3 -Vdc/2 0 0 0 0 0 0 

4 V4 Vdc/6 1 1 0 1 0 1 

5 V5 Vdc/6 0 1 0 1 1 1 

6 V6 Vdc/6 0 1 1 1 0 1 

7 V7 Vdc/3 1 1 1 1 0 1 

8 V8 Vdc/3 1 1 0 1 1 1 

9 V9 Vdc/3 0 1 1 1 1 1 

10 V10 -Vdc/3 0 1 0 0 0 0 

11 V11 -Vdc/3 0 0 0 0 0 1 

12 V12 -Vdc/3 0 0 0 1 0 0 

13 V13 -Vdc/6 0 1 0 1 0 0 

14 V14 -Vdc/6 0 1 0 0 0 1 

15 V15 -Vdc/2 0 0 0 1 0 1 

16 V16 0 1 1 0 1 0 0 

17 V17 0 0 1 1 1 0 0 

18 V18 0 0 0 1 1 0 1 

19 V19 0 0 0 0 1 1 1 

20 V20 0 0 1 0 0 1 1 

21 V21 0 1 1 0 0 0 1 

22 V22 Vdc/6 1 1 1 1 0 0 

23 V23 Vdc/6 0 0 1 1 1 1 

24 V24 Vdc/6 1 1 0 0 1 1 

25 V25 -Vdc/6 1 1 0 0 0 0 

26 V26 -Vdc/6 0 0 1 1 0 0 

27 V27 -Vdc/6 0 0 0 0 1 1 
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PROPOSED CONTROLLERS DESIGN 

(A) DMPPC Control Algorithm 

To address control challenges, the voltage expressions of the network are transformed into the voltage-

oriented dq reference frame using power-invariant dq transformation. This transformation yields the dq 

components of the voltage at the grid side, the voltage at the converter side, and the current on the grid 

side within the voltage-oriented dq reference frame, denoted as Udq, Vdq, and idq, respectively. 

Udq  =  Vdq + R ∙ idq + Lf ∙
didq

dt
    (7) 

To use MPC digitally, the system expression (7) needs to be in the discrete domain. Consequently, the 

forward Euler transformation is utilized to convert differential equations into difference equations. The 

system's discrete state space form is provided in (8). 

x(k + 1) = A ∙ x(k) + B ∙ u(k) +  M    (8) 

In the above equation the state variable x is given by equation (9) and other parameters are represented 

by the equations (10) to (13) that follows, 

x =  [id , iq]
T
       (9) 

u = [Vd , Vq]
T

 represents the input    (10) 

A =  [
(1 −  

Ts R

Lf
) Tsω

−Tsω (1 −  
Ts R

Lf
)

]  represents State Matrix (11) 

input Matrix B = [−
1

Lf
 , −

1

Lf
]     (12) 

M = [
Ud

Lf
 ,

Uq

Lf
]       (13) 

The instantaneous power theory states that expression (14) can be used to calculate the real power & 

reactive power of the (k + 2)th position at PCC. 

[
𝑃(𝑘 + 2)
𝑄(𝑘 + 2)

] =  [
(1 −  

Ts R

Lf
) Tsω

−Tsω (1 − 
Ts R

Lf
)

] [
𝑃(𝑘 + 1)
𝑄(𝑘 + 1)

] +
Ts 

Lf
 [

𝑈𝑑  (𝑘 + 2) ∙   𝑉𝑑(𝑘 + 1) − 𝑉𝑑
2 (𝑘 + 1) 

−𝑈𝑞 (𝑘 + 2) ∙   𝑉𝑞(𝑘 + 1)
] 

 (14) 

The expression (6) is used to predict the reactive as well as active power values for the 27 converter 

voltage vectors previously mentioned in table 1. The switching condition associated with the vector 

voltages that yields the lowest cost of a predetermined objective function is then applied to the converter 

in the subsequent control cycle.  

(B) Fuzzy Control Algorithm 

Fuzzy control is significant because it uses a set of rules to integrate concepts from human understanding 

into control rules. Usually, a system-experienced operator or design engineer specifies this set of 

guidelines. The fuzzy-DPMPC defined control criteria are as follows. In order to extend the life of costly 

BESS and to maximize its benefits, proper control of power is necessary. As a result, a minimal SOC 

threshold λ1 is established for battery discharge. When the SOC level reaches λ2, the battery begins to 

charge, and reactive power can be released until the state of charge reaches λ1. When the battery reaches 
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a SOC level of λ3, it can be used freely for grid conditions. 

We define the error functions as equation (15-17). The error costs for real, reactive, & battery power are 

denoted by the letters ep, eq, and eb in this case. Additionally, as provided in equation (18), the functions 

µpg, µqg, and µpb, represent the degrees of membership and are defined as exponential expressions. 

The normalization factors Kp, Kq, and Kb are used to scale µ based on the errors in real power, reactive 

power, and battery power. While the error is small, the exponential model is selected to enhance its 

influence on the objective function. The design engineer should define all of these ambiguous criteria 

along with the settings of parameters in accordance with the specifications and performance needs of 

the system. The design criteria for membership functions are met, and the appropriate SOC range to 

govern BESS's operation is established according this article as presented in figure 3. It shows in Figure 

4 the fundamental proposed block diagram of fuzzy based MPC control structure. 

 

Figure 3. Active & Reactive powers SOC Conditions 

𝐸𝑟𝑝(k + 2) = P(k + 2) −  (𝑃𝑔𝑟𝑒𝑓
 ∙  𝛾𝑆𝑂𝐶1)     (15) 

𝐸𝑟𝑞(k + 2) = Q(k + 2) −  (𝑄𝑔𝑟𝑒𝑓
 ∙  𝛾𝑆𝑂𝐶2)     (16) 

𝐸𝑟𝑏(k + 2) = P(k + 2) −  (𝑃𝑏_𝑟𝑎𝑡  ∙  𝛾𝑆𝑂𝐶1)     (17) 

𝜇𝑝𝑔,𝑞𝑔,𝑝𝑏
=  {

𝑒𝑥𝑝 (
𝑒𝑝,𝑞,𝑏 (𝑘+2)

𝐾𝑝,𝑞,𝑏
) − ∞ < 𝑒(𝑘 + 2) < 0

𝑒𝑥𝑝 (−
𝑒𝑝,𝑞,𝑏 (𝑘+2)

𝐾𝑝,𝑞,𝑏
)  0 ≤ 𝑒(𝑘 + 2) < ∞

            (18) 

 

Figure 4. Basic Structure of the Proposed FLC Based MPC 

HARDWARE AND SIMULATION RESULT COMPARISON 

The proposed SMC and MPV controller for the proposed configuration has been modelled and 

simulated using MATLAB/Simulink. The findings of the analysis are presented. For simulation, a solar 

PV system with 12 modules, each with a voltage of 64.2 V, a power of 305 W, and a current rating of 

5.96 A is taken into consideration. Figure 5 shows the prototype model for the proposed system. 
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Figure 5. Hardware Photograph of Proposed System 

For the simulation, the wind energy system is configured with the following specifications: 

voltage = 250 V, power output = 500 W and wind speed = 11 m/s². Table 2 outlines the 

parameters used in the simulation.                                   

Table 2. System Configuration Parameters 

Parameter Value 

Voltage across the DC link    Vdc= 220 Volts 

Capacitor Filter  C =100 µF 

Inductance Filter  L =0.09 H 

Sampling time  Ts =20 µsec 

A Resistive load, R 30 Ohms 

The Value of PI techniques Kp& Ki 27& 3 

 

Figure 6. Output voltage of DC/DC Converter Without Filter 

The DC-DC converter’s output-side voltage, after passing through the filtering circuit is depicted in 

Figure 7. The filtering has effectively reduced the ripple content observed in Figure 6. The Figure 8 

shows the current at the PCC for the proposed controller, while Figure 9 illustrates the power at the PCC 

for the same controller. 
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Figure 7. Voltage output of a DC/DC Converter with a Filter 

 

Figure 8. Current at PCC using Proposed method 

 

Figure 9. Power at PCC using Proposed method 
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Figure 10. Interlink Converter Voltage without a Filter 

 

Figure 11. Interlink Converter Voltage with a Filter 

In Figure 10, the leg voltages Va, Vb, and Vc of the interlink converter are displayed.  The voltage that 

results across the suggested interlink converter is shown in figures 10 and 11, respectively, without and 

with filters. Figure 11 makes it abundantly evident that the converter's filter design greatly reduces 

ripple. 
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        Figure 12. Various powers for different controllers for the proposed system 

The power profile of the entire system under consideration is illustrated in the figure 12 for all the type 

of the controllers considered in this research. The power profile of PV system, Wind system, Battery 

Management system, converter circuit, load side and the overall efficiency of the system are all 

illustrated in the figure 12. From the analysis, the proposed Fuzzy-DMPPC controller’s effectiveness is 

evident. 

 

Figure 13. Comparison of the THD Value of Voltage for Each Type of Controller  

Figure 13 compares the voltage output and the associated THD values for each of the all types of 

controllers that are taken into consideration in this paper. It is evident that when compared to the other 

two types taken into consideration here, the suggested Fuzzy-MPPDC control logic performs better and 

has a lower THD. 

The input voltage to the system is given using PV panels of rating 250 W and is maintained constant as 

per the specifications mentioned in Table 2. Figures 14 and 15 display the system voltage and current 

waveforms for the suggested system in grid-connected mode and without grid-connected mode.  
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Figure 14. Waveforms of the voltage and current in the system without a grid connection 

 

Figure 15. Waveforms of the voltage and current in the system with Grid Connected Mode 

Output waveforms are captured and Total Harmonic Distortion (THD) is assessed using YOKOGAWA 

WT1806E power quality analyser with THD value of 0.94 % is shown in figure 16.  

 

                   Figure 16. Total Harmonic Distortion of Grid Current under Grid Connected Mode 

Tables 3, 4, and 5 summarize the simulation results. Table 4 specifically presents the Total Harmonic 

Distortion percentages at voltage output and currents under various controller types, both with and 

without filters. Tables 5 and 6 provide a summary of the converter efficiency and settling time for each 

controller under transient conditions, respectively. 
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Table 3. Comparison of %THD of various controllers 

ON-Loaded 

Condition 

Fuzzy-

MPPDC 

MPVP & MPCP 

(THD %) 

MPVP (THD 

%) 

SMC 

(%THD) 

PI 

(%THD) 

Output 

Voltage  

Without filter 48.3 50.2 67.1 31.1 33.5 

With filter 0.63 0.75 1.1 6.1 14.6 

Output 

current  

Without filter 2.2 2.8 7.5 3.75 8.4 

With filter 0.48 0.55 0.75 2.4 2.9 

Table 4. Converter efficiency of various controllers 

Converter efficiency Fuzzy-

MPPDC 

MPVP & 

MPCP 

MPVP SMC PI 

A Neutral Point Clamped (NPC) inverter-based 3-

level interlink converter.  

98.9 98.6 98.1 97.5 92.1 

Table 5. Settling Time of various controllers 

Transient condition Fuzzy-MPPDC MPVP & MPCP MPVP SMC PI 

Transient load –settling time 

(sec) 

0.031 0.035 0.04 0.07 0.09 

 

The prototype model's performance is analyzed in comparison with its simulation results. The 

experimental setup incorporates a novel Three-phase inverter configured with a diode-clamped three-

level topology controlled by a Spartan 6 FPGA. The system employs 12 FGA15N120 IGBTs with 

integrated anti-parallel body diodes and 6 DSEP29-12B freewheeling diodes for efficient operation. 

CONCLUSION 

This study introduces, designs, and validates a novel Fuzzy-DMPPC controller for a hybrid grid-

connected system, utilizing a interlink converter of 3-level, verified through detailed simulation 

analyses. The suggested controller has the ability to incorporate experience-based knowledge into the 

fuzzy objectives alongside limitations of the classical DMPPC objective function. The trained models 

can efficiently reduce the computational cost of real-time control because they are built using simple 

arithmetic operations unrelated to the MPC algorithm's complexityThe proposed controller consistently 

outperforms all other controllers evaluated in this study across various performance metrics. The 

voltage's THD values for the suggested logic are 0.63%, which is lowest as compared with the other 

types. In prototype model under grid connected mode, the THD value is 0.94% comparatively less with 

simulation value of various converters. Additionally, the converter efficiency has significantly increased 

to 98.9% as related to the other controllers. Table 5 indicates that there has also been an improvement 

in the settling time as well. In light of this, it can be said that the proposed The Fuzzy-DMPPC system 

efficiently regulates the AC/DC interlinking converter, maintaining a stable AC supply and optimal 

power transfer among the microgrid and the utility power grid.  
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