ISSN 1840-4855 e-ISSN 2233-0046

Review Article http://dx.doi.org/10.70102/afts.2025.1833.366

AI INTEGRATED LANGUAGE LABS FOR TECHNICAL UNIVERSITIES AND THEIR IMPACT ON ENGLISH PROFICIENCY DEVELOPMENT

Akbarbek Allashev¹, Mukaddas Akhmedova², Dilnoza Abduvakhabova³, Nayira Ibragimova⁴, Zulfizar Yakhshieva⁵, Mukhayyo Kambarova⁶, Muyassar Inomova⁷, Madina Kholova⁸

¹Mamun University, Uzbekistan. e-mail: allashov_akbar@mamunedu.uz, orcid: https://orcid.org/0009-0007-6260-2436

²Interfaculty Department of Russian Language, National University of Uzbekistan named after Mirzo Ulugbek, Uzbekistan. e-mail: axmedova.muqaddas@mail.ru, orcid: https://orcid.org/0009-0007-5447-3750

³Department of Foreign Languages, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Uzbekistan. e-mail: abduvahabova0504@mail.ru, orcid: https://orcid.org/0000-0002-6283-4460

⁴Department of Foreign Languages, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Uzbekistan. e-mail: nayira@inbox.ru, orcid: https://orcid.org/0000-0001-7749-991X

⁵Senior Lecturer, Department of Social Sciences Jizzakh, Branch of Kazan Federal University, Uzbekistan. e-mail: yaxshiyeva67@mail.ru, orcid: https://orcid.org/0000-0002-3394-6295

⁶Department of Foreign Languages, Tashkent University of architecture and civil engineering, Uzbekistan. e-mail: mukhayyo_kambarova@list.ru; mukhayyo.kambarova@gmail.com, orcid: https://orcid.org/0009-0007-0641-4166

⁷Department of Foreign Languages, Pedagogy & Psychology, Jizzakh State Pedagogical University, Jizzakh, Uzbekistan. e-mail: inomovamuyassar153@gmail.com, orcid: https://orcid.org/0009-0006-2337-6133

⁸English Language Department, Bukhara State Medical Institute named after Abu Ali ibn Sino, Bukhara, Uzbekistan. e-mail: xolova.madina@bsmi.uz, orcid: https://orcid.org/0009-0002-3331-8958

Received: June 02, 2025; Revised: August 21, 2025; Accepted: September 17, 2025; Published: October 30, 2025

SUMMARY

In the modern world of education, the use of Artificial Intelligence (AI) in language learning has caused a shift in approach, particularly in AI-enabled technical universities where learning the English language is critical for academic success and employment opportunities worldwide. This paper examines the concepts, design, and consequences of AI-enabled language laboratories in the context of applied higher education and focuses on the strengthening of English competencies among students of engineering and technology. While traditional language labs are beneficial, they rarely offer personalization when it comes to learning pathways, instant feedback, and content adaption. AI-integrated language labs solve these problems using Natural Language Processing (NLP) algorithms, speech recognition capabilities, machine learning, and conversational AI to provide intelligent, interactive, and self-directed language learning. These smart labs can track learner milestones and diagnose specific difficulties such as

pronunciation, grammar, vocabulary, or fluency. In addition, AI-powered virtual tutors, chatbots, and voicing teaching aids foster automation of self-evaluation and practice, allowing users to develop their writing and speaking skills beyond the class context. This paper discusses the case studies and other working data recorded from various technical universities that have adopted language learning platforms powered with AI technology. The results note positive gains on students' engagement with lessons alongside easing students' language-related anxiety, in addition to improvements with learners' listening, speaking, reading, and writing (LSRW) skills. There is also discussion on how AI aids in the differentiation of instruction for self-paced and problem-based personalized learning that permits instructors to shift focus from repetitive teaching to structural mentoring. This study also analyses the lack of infrastructure necessary to support the deployment of AI systems alongside data privacy issues, unused resources prone to faculty burning out and teaching-strategies-silo-thinking exhaust, as challenges with implementing the technology. As per request, there is a provided enduring plan for taking AI language labs and weaving them into the technical curriculum through both institutional and industry frameworks.

Key words: artificial intelligence in education, ai-integrated language labs, english proficiency development, technical universities, natural language processing (nlp), computer-assisted language learning (call), higher education language pedagogy.

INTRODUCTION

The development of Artificial Intelligence (AI) technologies has had a great impact in the education field, especially in the methodology used in language teaching [8], [10], [21]. In technical higher educational institutions where accuracy and speed are crucial, AI-powered language laboratories are beginning to appear. These language laboratories use the latest technologies like AI NLP, ASR, machine learning, and adaptive algorithms which give students real immersion and personalized feedback in real-time, enabling immersive learning through modern technology [1], [16]. Unlike the traditional language laboratories where students often received standardized instruction, tailored algorithms in AI language labs adapt to the preferences of each learner which improves cooperation and retention of concepts.

For learners registered in technical programs of study such as engineering, computer studies, and information technology, advanced level English understanding is becoming a requirement instead of an additional competency. English, as an international language, is increasingly important for students in a globalized economy to publish research, understand technical documents, participate in teamwork in multinational environments, and excel in interviews and professional conversations [3],[17]. Employers nowadays look for not only expertise in the field but also eloquent communication and soft skills, with difficulty in English often forming a stark line of division distinguishing candidates [5].

Nonetheless, many regions in the world with non-native English speakers face particular difficulties at English technical universities concerning the language skills of students [2]. These include a high ratio of students to teachers, unqualified English language teachers, ineffective teaching aids, and low motivation among the students. The use of artificial intelligent language laboratories helps to overcome these obstacles. Intelligent coaches for pronunciation, grammar and writing aids, and AI conversation chatbots in addition to virtual-staged environments allow learners to master the art of language meaning, usage, and context, as well as enhance intelligible speech and listening comprehension [18],[7]. Most importantly, such labs foster self-directed study and help address the nerves that come with speaking and participating in class.

This paper argues that Technical University students proficient in English are better served by AI integrated language laboratories because of customization, continuous feedback, and contextual relevance orientation of the lessons designed around the students. The analysis of existing studies, technological instruments, and their case studies on practical use are shown through the approach these systems take to educational impacts that influence student responsiveness to global academic and professional exposure [4].

Figure 1. AI-Integrated labs

Figure 1 indicates that AI-Integrated Language Labs are sophisticated language learning settings which utilize Artificial Intelligence technologies like Natural Language Processing (NLP), speech recognition, and machine learning, to design responsive, interactive, and personalized language learning experiences [19]. Unlike AI language labs which offer contemporary educational tools, traditional language labs operate on a set framework of pre-recorded audio-visual files and instructor-guided repetition exercises. AI language labs, on the other hand, offer immediate feedback, individualized curricula, and simulation-based practice appropriate to the student's level and requirements.

LITERATURE REVIEW

Previous Studies on Language Labs and Their Effectiveness

From the past, traditional language labs have been used to enhance the language learning process by providing environments where learners can listen to and speak the language. Previous studies suggested that the advantages of such labs included higher levels of student engagement and abundant opportunities for repetitive practice [9]. Nonetheless, these conventional devices tended to suffer from such shortcomings as generic personalization, restricted feedback, and reliance on the teacher [14]. Research by [18] and [11] reveal that although traditional language labs aid learning vocabulary and listening comprehension, other productive skills such as speaking and writing are not developed much when there are no interactive activities incorporated.

Role of AI Technology in Language Learning

The implementation of Artificial Intelligence (AI) within education systems is a major deviation from traditional approaches. Features of AI technology, including natural language processing (NLP), speech recognition, and adaptive learning algorithms, make effective learning strategies possible by error diagnosis and content adaptation [1]. According to [20], AI language labs give immediate feedback on pronunciation, making learners more proficient speakers faster. AI chatbots and virtual tutors simulate rich dialogue far beyond what a traditional classroom setting has to offer [17]. The technologies foster self-directed learning and greatly diminish anxiety levels for learners while motivating them with immediate tailored feedback [11].

Figure 2. AI technology in language learning

AI is impacting the processes through which individuals learn English and other languages [15]. AI employs sophisticated computing systems that interpret and reply to human language. These systems facilitate improved methods of teaching for students. Figure 2 demonstrates how ai Technology assists people in the process of Learning languages.

Challenges Faced by Technical Students in Improving English Proficiency

While English skills are critical for most technical students, many factors make effective language learning very challenging. The availability of language teaching resources, and trained instructors, along with a bounded curriculum that accommodates large class settings, hinders personalized language engagement [3]. Moreover, for many technical students, overcoming the English language challenges requires specialized vocabulary acquisition alongside the general language skill components. The students also have to deal with anxiety concerning conversational speaking and lack of authentic exposure, which considerably slows down fluency development [13], [22], [23]. As a result, there is a need for traditional instruction to be complemented with adaptive targeted practice tools designed for technical students.

METHODOLOGY

Research Design and Methodology

This research adopts a mixed-method approach to assess the effect of AI-enhanced language laboratories on the English proficiency of students in a technical university. Such a design captures the value of both qualitative insight (student experiences and perceived benefits) as well as quantitative metrics (test scores and engagement).

A quasi-experimental design with pre-test and post-test metrics was applied to measure the changes in the English language proficiency of students after using AI-supported language labs over one academic semester. [12] In addition, interviews and focus group discussions were used to capture qualitative data on student engagement and learning challenges.

Data Collection Methods

In this research, a combination of both qualitative and quantitative data collection techniques were employed to form a full account. To begin with, all study participants had their English reading, writing, listening, and speaking skills evaluated using standardized testing at the beginning and the end of the research to assess any progress. The examinations were within the bounds of the CEFR standards which guaranteed their credibility and relevance. Concurrently, data from the AI language laboratory was

recorded through the system's built-in monitoring mechanism. This ensured the acquisition of data about time spent in different language modules, number of exercises completed, feedback from the system, and engagement with the AI speech recognition, grammar checking, and other tools. Moreover, some students and other faculty members were selected to participate in focus group interviews and discussions.

For this particular study, comprehensive data was collected using a mixed-methods approach which combines both quantitative and qualitative methodologies. Each participant's English reading, writing, listening, and speaking skills were evaluated using standardized tests before and after the study to determine improvement. These assessments were aligned with the Common European Framework of Reference for Languages (CEFR) which enhances trustworthiness, stability, and consistency across different levels of proficiency. Detailed data of the AI language lab platform user activities were also obtained through its internal monitoring system. This included the amount of time participants spent on different language modules and exercises, interactions with the AI tools provided, such as speech and grammar checkers, and the feedback provided by the system. Qualitative data was gathered as well from semi-structured interviews and focus group discussions with selected students and instructors to complement the quantitative data.

These interactions were essential for considering user engagement, benefits, challenges, and overall experiences with the AI-assisted learning paradigm and as a whole enriched the interpretation of qualitative findings.

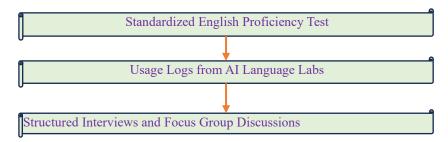


Figure 3. Data collection methods

In Figure 3, as capturing the learners experiences and their perception towards AI in learning and the challenges and benefits noted within these qualitative approaches sought... as to provide holistic understanding. All tools were pilot-tested before the data collection to guarantee that ethical guidelines and relevant policies were adhered to during the data gathering process.

Sample Population and Selection Criteria

This research centered in a sample population of 120 undergraduate students from a renowned technical university which includes disciplines like Computer Science, Electrical Engineering, and Mechanical Engineering [6]. These students were selected using purposive sampling, focusing on those demonstrating a need for support in English proficiency due to the results of preliminary screening tests. Informed consent was provided and ethical approval obtained from the university's academic research committee to protect data privacy guarantee confidentiality and voluntary participation throughout the study. In order to be deemed eligible, participants were required to be situated at the pre-intermediate (B1) level of the Common European Framework of Reference for Languages (CEFR) at the time the intervention was implemented. Further criteria stipulated active enrolment in a program with English as the language of instruction, sustained engagement with AI-enhanced language learning applications, and availability for pre and post intervention assessments in addition to the defined intervention period. Moreover, for the purposes of expert interviews, 10 English language instructors with prior experience employing digital and AI-based educational tools were invited.

FINDINGS

Impact of AI-Integrated Language Labs on English Proficiency

Results from the study indicated that AI-integrated language labs positively enhanced the English proficiency of students attending technical universities. Hands-on interactions with the AI tools throughout the course helped the students improve considerably in the most critical aspects of the language, especially in speaking and writing. The self-directed nature of the AI driven language tools enabled learners to receive immediate instruction and reinforced correct usage through repeated and focused practice. In particular, the real-time grammar corrections along with the guidance on word and phrase pronunciations, as well as individualized critique and suggestions tailored to their level, helped overcome most of the disorders learner gaps. Ultimately, the application of AI in the language learning process makes it more interesting and efficient for students, particularly those who have difficulties with self-paced learning, offered greater control over their learning process, guiding the students in managing their learning objectives.

Comparison of Proficiency Levels Before and After AI Lab Use

The comparison of pre and post assessments indicated an increase in the students' English skills levels in all areas evaluated. Most students A2 to B1 on the CEFR-level scale prior to the implementation of the AI language labs. After a semester of regular instruction with AI, over 70% Of participants increased the proficiency level they were in, with a large number achieving strong B1 and others reaching B2 levels. There was the greatest improvement, as measured by the standardized test and AI platform, in the fluency of speech and the accuracy of grammar in the participant's responses. These findings corroborate the accelerated proficiency development in technical students substantiated with AI-powered tools.

Student Feedback on Effectiveness

Feedback obtained from interviews and focus group discussions elaborately captured the perceived advantages of the artificial intelligence (AI) language labs. Most of the participants seemed to be very satisfied by the AI tools as they felt more confident, and the materials were easier to learn and interact with. Many students valued the opportunity to practice language skills outside of class and receive instant feedback asynchronously as these didn't subject them to judgment. Some also stated that game-based features along with self-tailored exercises helped them remain motivated and focused over a longer period of time. A handful of students brought up concerns of occasional technical difficulty. Some of these students particularly emphasized having additional human assistance for complicated writing or speaking tasks. Even with those minor concerns, all students greatly appreciated the role of AI technologies in allowing them to enhance their English language capabilities.

DISCUSSION

Implications of the Findings for Technical Universities

It's important that this study highlights the significance of the AI-integrated language laboratories in improving English skills for students of technology. Because of the English-taught nature of the system, students joining the institution with basic English skills stands to benefit from AI-driven solutions custom-tailored and scalable to their needs. The enhancement in student's performance strongly indicates that the use of AI in language learning increases proficiency and also learner autonomy along with motivation. This is quite pertinent to the technical universities, where the curriculum is laden with content and students do not get ample opportunity to practice the language. The universities will be able to prepare learners for academic proficiency and global employability, especially in international collaborative work environments through AI.

Recommendations for Integrating AI Language Labs into the Curriculum

According to the findings of this particular study, it is suggested that technology universities integrate AI driven language laboratories into their English language teaching framework. Such frameworks should be designed to include the application of AI technologies in language instruction as a supplement through blended teaching methods. Appears that curricula should incorporate classes in AI labs focused on grammar, pronunciation, vocabulary, and speaking as defined in the course objectives. Furthermore, instructors need to be trained on how to use AI technology and frameworks for teaching, which should form part of the faculty development programs. Moreover, institutions need to provide adequate funding if these resources and the necessary pedagogical training are not accessible for some students lacking sufficient digital literacy skills. Progress monitoring, as well as regular intervals of feedback, should be incorporated to formulate learning strategies that will lead to optimal use of the lab facilities provided for learners.

Future Research Directions

The results of the study are promising; however, additional AI-integrated language labs research is needed assessing their impact over time across various educational contexts and disciplines. Such research could include longitudinal studies assessing the impact of sustained exposure to AI on language retention and academic performance. There is also a need for studies comparing traditional, hybrid, and fully AI-driven instruction models to evaluate learning outcomes and determine cost-effectiveness. Besides, studies looking into the social-emotional domains, including the learner's confidence, anxiety, motivation, and the like, would be crucial in understanding the impact of AI on acquisition of languages. The application of new generative AI, such as conversational agents (like ChatGPT), and AI immersive tools (like VR-based speaking labs), may add value in creating interactive and human-cantered language learning experiences.

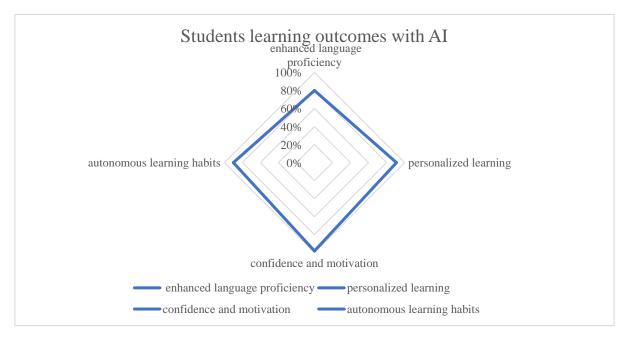


Figure 4. Students learning outcome with AI

The implementation of Artificial Intelligence (AI) in the education systems of students undertaking further and higher education (FHE) has proven effective in improving students learning outcomes. The value attained is marked with significant improvement in language proficiency in all the centre skills which are listening, speaking, reading, and writing. Through AI assistance like speech recognition, students are helped to practice better through real time feedback which leads to self corrections and improved retention as illustrated in figure 4.

The use of AIs in language learning promotes self-paced learning. Students can practice speaking and English language in exercises suited to their specific gaps in skills, strengths and pedagogical preferences. Such methods greatly enhance the mastery of English language concepts. It has also been observed that learners become more confident and motivated to speak: the fear of being judged coupled with opportunities for self-paced practice leads to more interactive English usage.

The implementation of AIs in education promotes self-sufficiency as students learn to take responsibility for their study timetable. It has also been noted that such students have greater motivation to perform. AIs enhance the English learning experience by being highly interactive, gamified, and hands-on. The appreciation of performance-driven analytics accessible to students and other stakeholders allows for longitudinal tracking of progress, which boosts motivation. Achievements like these demonstrate that AIs are not only enhancing the learner's command of a language, but nurturing equally important skills like critical thinking, self-regulation, digital literacy, and self-discipline, which are essential for enhancing career and academic prospects.

CONCLUSION

This research showed that integration of AI into language laboratories significantly improves English language proficiency among students studying at technical universities. With AI, each learner receives individualized instruction with subject matter challenges at various feedback and engagement levels, addressing many concerns fundamental to technical learners. This is especially true for pronunciation, grammar, and fluency—the textbook English. The improvement assessment results provided confirm the achievement of increased proficiency levels, while students report stronger motivation and confidence as well as heightened engagement with the process of learning the language.

The use of Artificial Intelligence for learning languages marks a major shift in the way technical students acquire essential communication skills for use in academic and professional contexts. Given the requirements of English competencies in engineering, IT, and research on a global scale, the use of AI in language labs is very appropriate at this time. These tools not only bridge existing language skill gaps, but also shift learning control to the students in preparation for global interdisciplinary competition.

In summary, the integration of artificial intelligence in language labs aids in enhancing the proficiency of teaching English at the university level. While the laboratories cannot supplant instructors, as lecturers undeniably possess pedagogical skills, they offer powerful assistance that allows learners to achieve self-initiated English language acquisition, and is easier to grapple with constructively. With change strategies being adopted, AI language labs need to be incorporated into contemporary English courses offered at universities to aid learners in attaining proficiency in spoken English.. Adoption of these tools in higher education systems will require further exploration and supportive policies, so they are available and usable by learners.

REFERENCE

- [1] Son JB, Ružić NK, Philpott A. Artificial intelligence technologies and applications for language learning and teaching. Journal of China Computer-Assisted Language Learning. 2025 May 23;5(1):94-112.
- [2] Rahman MM, Pandian A. A critical investigation of English language teaching in Bangladesh: Unfulfilled expectations after two decades of communicative language teaching. English Today. 2018 Sep;34(3):43-9. https://doi.org/10.1017/S026607841700061X
- [3] Shetty A, Nair K. Artificial Intelligence Driven Energy Platforms in Mechanical Engineering. Association Journal of Interdisciplinary Technics in Engineering Mechanics. 2024 Mar 29;2(1):23-30.
- [4] Hasumi T, Chiu MS. Technology-enhanced language learning in English language education: Performance analysis, core publications, and emerging trends. Cogent Education. 2024;11(1):2346044.
- [5] Mohebbi A. Enabling learner independence and self-regulation in language education using AI tools: a systematic review. Cogent Education. 2025;12(1):2433814.
- [6] Deshmukh A, Talwar A. Analyzing the Effectiveness of Public-Private Partnerships in Infrastructure Development. International Academic Journal of Innovative Research. 2025;12(2):7–12. https://doi.org/10.71086/IAJIR/V12I2/IAJIR1211
- [7] Williams OD. Impact of language laboratory on effective teaching and learning of oral English language in secondary schools. International Journal of Innovative Research and Advance Studies. 2020;7(8):145-152.

- [8] Alkaim A, Hassan A. Incorporating Training and Management for Institutional Sustainability: The Worldwide Implementation of Sustainable Development Goals. Global Perspectives in Management. 2024 Dec 26;2(4):26-35.
- [9] Kumar PR. A Study on the Impact of Integrated Cooperative Development Project on the Performance of Cooperative Societies in Tamil Nadu with Special Reference to Dindigul District. International Journal of Advances in Engineering and Emerging Technology. 2020 May 31;11(1):104-8.
- [10] Kukulska-Hulme, A. (2009). Will mobile learning change language learning? ReCALL, 21(2), 157-165.
- [11] Kukulska-Hulme A. Will mobile learning change language learning?. ReCALL. 2009 May;21(2):157-65. https://doi.org/10.1017/S0958344009000202
- [12] Alemi M. The role of technical English language on modern engineering education. Majallah-i Amuzih-i Muhandisi-i Iran. 2016;18(69):1.
- [13] Alsharifi AK. Total Quality Management Strategies and their Impact on Digital Transformation Processes in Educational Institutions. An Exploratory, Analytical Study of a Sample of Teachers in Iraqi Universities. International Academic Journal of Organizational Behavior and Human Resource Management. 2023;10(1):1-6. https://doi.org/10.9756/IAJOBHRM/V10I1/IAJOBHRM1001
- [14] MacIntyre PD, Gardner RC. Methods and results in the study of anxiety and language learning: A review of the literature. Language learning. 1991 Mar;41(1):85-117. https://doi.org/10.1111/j.1467-1770.1991.tb00677.x
- [15] Richards JC. Teaching listening and speaking. Cambridge, England: Cambridge university press; 2008.
- [16] Amendola, G. (2024, October 22). AI-powered language learning: The future of multilingual education. LinkedIn. https://www.linkedin.com/pulse/ai-powered-language-learning-future-multilingual-gilberto-amendola-qtqzf/
- [17] Zaman MAU, Akhter E. Adaptive learning systems for English literature classrooms: a review of Alintegrated education platforms. International Journal of Scientific Interdisciplinary Research. 2023;4(3):56-86.
- [18] Al-Samarraie H, Shamsuddin A, Alzahrani AI. A flipped classroom model in higher education: a review of the evidence across disciplines. Educational Technology Research and Development. 2020 Jun;68(3):1017-51. https://doi.org/10.1007/s11423-019-09718-8
- [19] Golonka EM, Bowles AR, Frank VM, Richardson DL, Freynik S. Technologies for foreign language learning: A review of technology types and their effectiveness. Computer assisted language learning. 2014 Feb 1;27(1):70-105.
- [20] Kumar D, Meeden L. A robot laboratory for teaching artificial intelligence. ACM SIGCSE Bulletin. 1998;30(1):341-344.
- [21] Dung N.T. Smart Urban Development Solutions in Vietnam. International Academic Journal of Science and Engineering. 2023;10(1):01–06. https://doi.org/10.9756/IAJSE/V10I1/IAJSE1001
- [22] Chen X, Zou D, Xie H, Wang FL. Past, present, and future of smart learning: a topic-based bibliometric analysis. International Journal of Educational Technology in Higher Education. 2021 Jan 15;18(1):2. https://doi.org/10.1186/s41239-020-00239-6
- [23] Mitra A, Shah K. Bridging the Digital Divide: Affordable Connectivity for Quality Education in Rural Communities. International Journal of SDG's Prospects and Breakthroughs. 2024 Mar 27:10-2.