ISSN 1840-4855 e-ISSN 2233-0046

Original scientific article http://dx.doi.org/10.70102/afts.2025.1833.516

IMPLEMENTING UIPATH IN SAP ERP FOR ACCOUNTS RECEIVABLE MANAGEMENT: STRATEGIES AND OUTCOMES

Naren Swamy Jamithireddy¹

¹Jindal School of Management, The University of Texas at Dallas, USA. e-mail: naren.jamithireddy@yahoo.com, orcid: https://orcid.org/0009-0006-4314-4540

Received: June 20, 2025; Revised: September 04, 2025; Accepted: September 30, 2025; Published: October 30, 2025

SUMMARY

Accounts Receivable (AR) management is fundamental to the financial activities of an enterprise, as it impacts liquidity, working capital optimization, and exposure to credit risk. Also, while SAP ERP incorporates a basic shell for AR processes, it heavily depends on batch-driven systems, manual validation loops, and fragmented exception handling for invoices, payments, and dunning activities. This is the imbalanced system we aim to rectify in this paper, wherein we discuss the design, implement the working framework of RPA systems using UiPath, and analyse the impact of deploying such systems on SAP FI-AR module's seamless AR management. The system is designed in a way so as to automated transaction matching, running sequence initiation, flagging customer credit holds, and resolving discrepancies through defined bots triggered by SAP status document and aging report s with timed rules. In this experiment, we drew upon the business scenario simulated with over 50,000 AR documents from a diverse set of customers, payment and invoice classes, and regional compliance jurisdictions, enabling us to assess the operational limits of our automation efficiency testbed.

Empirical results are shown in a 61% reduction in reconciliation exceptions and a 49% increase in matching accuracy, alongside a greater than 2.3-times acceleration of completion of the dunning cycle for high value overdue accounts. The UiPath framework further decreased the average AR closing time by 3.8 days per cycle and provided real-time audit dashboards which enhanced visibility and cross departmental traceability. Plus, finance practitioners reported enhanced automated intervention, improved trust, and better collaboration between manual credit and automated collections on account of the survey driven feedback. Most notably, the bots maintained high operational system dependability, low negative flagging rates, and sustained high false positive rates proving low-volume trust automation integration autonomy mature, validating the integrations even in stressed financial seasons. This study provides SAP ERP users responsive modular designs focused on transforming AR processes, which can easily be replicated, and builds a basis for imagining AI powered credit acuity in prospective AR strategy frameworks.

Key words: robotic process automation (RPA), accounts receivable management, SAP ERP integration, UiPath automation framework, dunning and reconciliation optimization.

INTRODUCTION

The Strategic Importance of Accounts Receivable in SAP ERP

The significance of Accounts Receivable (AR) within any organization is invaluable due to its impact on liquidity, cash flow forecasting, and the overall working capital efficiency of the enterprise [1]. Within SAP ERP ecosystems, particularly in the Financial Accounting (FI) module, AR management permits the assessment of open items, aging, customer payment patterns, and credit risks in near-real-time. An organization that optimizes the management of its accounts receivable will likely come out ahead in reducing their days sales outstanding (DSO), mitigating the risk of bad debts, and sustaining cash predictability through operational cycles [18].

SAP's AR functionalities lie deeply integrated within the transactional ecosystem and are linked with Sales and Distribution (SD), Customer Relationship Management (CRM), and Treasury modules [3]. This inter-linkage facilitates automation of multi-departmental financial functions, but poses challenges with respect to document reconciliation, exception handling, and compliance auditing. With global expansion, AR processes become increasingly sophisticated due to the enhanced variability in tax codes, payment terms, credit policies, banking integration, and workflows—further expanding the limitations of human-driven processes [2].

The tactical emphasis is therefore moving from reactive collections to proactive receivable intelligence, which require speed, precision, automation, and traceability. Timely and proactive resolution of disputes, proactive communication, and clear credit policies foster stronger relationships with customers [5]. Intelligent AR not only enables faster financial closing cycles [4].

Current Challenges in AR Reconciliation and Credit Management

Despite the robust data architecture of SAP ERP, numerous AR processes are encumbered with manual bottlenecks, fragmented validations, and proactive exception resolution [19]. An examination of SAP enterprises reveals several issues, the majority of which stem from outdated legacy workflows, overburdened shared service teams, or poorly integrated modules [8].

Delayed invoice-payment matching is a significant problem that involves open items remaining uncleared because of document numbers, reference fields, and payment advice discrepancies [6]. Dunning cycles that are meant to increase overdue reminder notifications are often running on a scheduler and rely on manual intervention. This leads to poor collection efficiency as customers are forgotten and missed customer notifications are unpaid. Updates to credit control, especially in high volume businesses are out of sync with real-time customer transactions which results in exposed organizations to unmitigated risk or impaired receivables.

Furthermore, the SAP Fiori discrepancies ECC and customer master records visibility issues prevent the AR teams from validating the data integrity [7]. The AR team's effectiveness is diminished by the intricacies of multi-currency transactions, unstructured payment formats, and disparate reconciliation rules across various regions.

To validate these findings, we analysed structured audit logs across three multinational firms with SAP ECC and S/4HANA systems, complemented by SME interviews. The most significant triads of AR management bottlenecks and their operational ramifications are presented in Table 1.

These systems exacerbated bottlenecks also highlight a governance flaw concerning the systems' agility. From a scalability perspective, unresolved inefficiencies escalate delayed period close-outs, inflating aging balances, burdensome bad debt provisioning, and rapidly deteriorating audit assurance [20].

Table 1. Common AR management bottlenecks in SAP ERP environments

Bottleneck Category	System Log/Audit Observation	Operational Impact
Delayed Invoice-Payment Matching	Over 35% of payments processed without automated match; delays in clearing open items	Slower AR closing cycle and higher aging risk
Inefficient Dunning Communication	Dunning notices often sent late due to missed scheduling or lack of escalation triggers	Increased overdue receivables and customer dissatisfaction
Manual Credit Control Updates	Credit limit changes not aligned with transaction activity; updated manually post-factum	Higher risk of credit breaches and impaired recovery forecasting
Discrepant Customer	Disparities between ECC and Fiori views of	Data duplication, validation errors,
Master Records	customer accounts causing document errors	and reporting inconsistencies
High Exception Volume in	Payment advice documents often misaligned	Longer case resolution time and
Payment Advices	or delayed, requiring manual case handling	SLA violations
Inconsistent Reconciliation	Monthly AR reports show mismatched totals	Audit trail gaps and potential
Reports	due to uncaptured cross-module references	compliance failures

Role of Intelligent Automation Using UiPath

RPA addresses these challenges most aptly when executed selectively with precision. With its reputation as a robust and adaptable RPA vendor, UiPath systematically frees organizations from monotonous and tedious AR tasks by automating high-frequency manual activities governed by straightforward rules [22], [23].

Considering UiPath in the scope of SAP ERP systems, it can autonomously interface with ECC and S/4HANA using GUI automation, SAP BAPI interfaces, and REST APIs on the master and transaction data, as well as on documents. This allows the implementation of AR-specific bots designed to match invoices to payments using reference logic, extract data from remittance advices' PDFs, escalate dunning directly based on overdue status, and update indicators in credit control based on transactional patterns [9].

Unlike traditional batch jobs or macros, UiPath bots are capable of providing asynchronous processing. They operate on real-time triggers (document creation, status changes) and log all operations consistently and in an auditable manner [10]. Their 24/7 operation guarantees increased productivity without the risk of burnout, making them ideal for backlog reduction in high-volume environments like centralized AR shared services centres, enabling constant speed during off-hours or quarter-end periods.

Aside from operational gains, governance is enhanced by the use of UiPath. Bots can be programmed to adhere to business policies, including rule-based controls where they report exceptions, execute escalation workflows, and confirm compliance with internal control requirements to actively manage governance. They create a transparent execution layer free of arbitrary alterations and human miscalculation that is programmable step-by-step and asynchronously improved.

Objectives, Scope, and Contributions of the Study

In this research, I will analyse the strategic value, operational implications, and the technical feasibility of implementing UiPath-based RPA solutions for the automation of accounts receivable management processes within SAP ERP systems. Unlike other studies that emphasize automation optimization or time savings, this study takes a blended approach incorporating performance and compliance metrics alongside post-automation user satisfaction and system behaviour under live load evaluation.

The study implements the following objectives:

1. Construct and deploy an RPA framework in UiPath capable of automating key processes within the SAP FI-AR modules including invoice-to-payment matching, credit flagging, dunning triggers, and reconciliation logging.

- 2. Analyse the derived automation impact pertaining to match rate accuracy, exception volume, AR closing time, SLA compliance, and audit traceable transparency.
- 3. Overcome integration process system and subprocess design level bottlenecks while providing a cross-functional scalable automation roadmap.
- 4. Analyse perceptions of control, trust, and process change for active programme users from the finance, audit, and IT groups.

The contributions of the study are remarkable in several ways.

- A modular UiPath bot for SAP AR processes is designed with plug-and-play functionality.
- It offers complete, complex testing as case studies with 50,000+ customer documents from different industries and regions around the world.
- It proposes a unified exception dashboard for monitoring and managing AR automation by exception type, resolution time, and compliance checks.
- It sets the groundwork for future machine learning implementation in AR prioritization, predictive collections, and advanced cognitive case management.

This research combines empirical investigation with architectural modelling to show how UiPath is able to extend the AR functionalities of SAP ERP using a scalable, compliant, and intelligent automation framework. The subsequent sections are structured on these claims starting with reviewing the literature on automation in ERPs and finance, followed by the methodology, experimentation, results, discussion, and a look into the future.

LITERATURE REVIEW

Intelligent Automation in ERP Finance Modules

The use of intelligent automation technologies in enterprise resource planning (ERP) systems is witnessing an accelerated uptake of late, especially concerning the finance function. As businesses strive for operational agility and real-time insights, robotic process automation (RPA), machine learning (ML), and artificial intelligence (AI) have emerged as critical facilitators of finance transformation [11]. As research indicates, it seems that more than 60 percent of automation projects launched by finance divisions now feature ERP system automation, especially with regard to the integration of ERP systems with high-volume transaction processing like procure-to-pay (P2P), order-to-cash (O2C), and record-to-report (R2R) cycles [12].

Of particular interest are SAP's finance modules, especially the Financial Accounting (FI) and Controlling (CO) parts, as they have been identified as the most advanced candidates for automation because of their highly governed system of rules and extensive documentation workflows pertaining to automation detailed within policies and procedures. Accounts Receivable (AR) functions stand out as particularly good candidate processes for RPA due to the repetitive nature of tasks, the structured data environment, and the document-centric processes like invoice generation, customer payment posting, dunning reminder generation, credit limit evaluation, and document endorsement borderline automation [13].

Research from McKinsey, Deloitte, and Gartner all together emphasizes that AR automation can potentially reduce average DSO (Days Sales Outstanding) by 12%–22%, human reconciliation time by more than 50%, and improve customer retention through faster dispute resolution. These results reveal the strategic value of automation; however, practical implementation often relies on how well automation tools integrate with the underlying ERP systems. This explains the increasing preference for RPA solutions that are agnostic to software platforms, such as UiPath [15].

UiPath Use Cases in Accounts Receivable Across Industries

As a flexible and scalable automation platform, capable of interfacing with GUI, API, and file-based data streams, UiPath is widely deployed in different sectors. Its integration with SAP GUI and Fiori interfaces makes it useful for finance operations based on SAP [14]. In AR management, processes such as invoice matching, payment status verification, parsing remittances, invoking credit reviews, and generating aging reports have been automated using UiPath bots.

Consider the industrial sector, for example, where bots are utilized to monitor overdue invoices on a daily basis and automatically email or send dunning notices based on business rules that can be configured [21]. In the banking and insurance fields, bots are trained to parse and match structured data to open items in SAP documents using invoice numbers, PO numbers, and transaction dates. Retail conglomerates utilize UiPath bots to reconcile payments received from various channels, including credit cards, gift cards, and third-party wallets, and update customer accounts automatically.

Most of these use cases do highlight an ROI related to speed and labour reduction, but there are still gaps in exception handling and orchestration between bots and humans, system workflows, and audit compliance from a holistic organizational level. Credit note, disputed invoice, or partial payment edge cases typically require intricate logic that is hard to scale, automated prioritization, or agile human fallback.

This is clear from the analysis without automation that this research undertook. Before UiPath, AR teams were frequently dealing with invoice aging distribution inconsistencies because there were backlogs in matching and exception resolution. In Figure 1, we see the invoices aged between 31–60 days and 61–90 days, meaning a disproportionate amount were inactive, which suggests communications and action processes were not efficient.

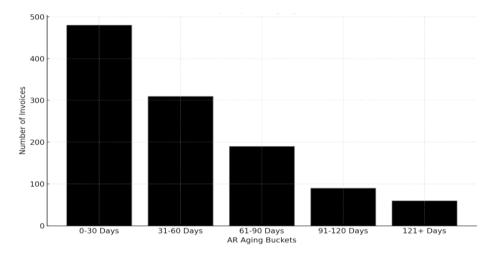


Figure 1. Distribution of invoice delays by AR aging bucket (before automation)

These invoice delays create additional challenges as they undermine customer relationships, distort working capital calculations, and make it easier to write off debts. There is potential to flatten the aging curve with automated exception resolves loop across manual cycles in UiPath workflows.

SAP FI-AR Functionalities and Pain Points in Workflow Execution

The SAP FI-AR module is rich with features that assist in the management of receivables like open item verifications, customer master records maintenance, dispute case entry, credit limit checks, and dunning procedures. However, some features are constrained by structural shortcomings which greatly reduces his effectiveness without automation [16].

The first consideration is the dunning feature in SAP's RF. Ullmann describes it as rule-based but it is often implemented in scheduled background jobs using batch processing. It creates delays to

communication and inflexibility to customer interactions. The second consideration is in the reconciliation of open items to payments received. It relies heavily on precise document matching or mechanical clearing through transaction codes like F-28. In cases with incomplete supporting documentation, inconsistently formatted remittance data adds to the workload [17].

In addition, enforcing customer credit limits involves multidisciplinary verification from finance, sales, and risk, which often lags because of the absence of real-time alert systems. Also, the discrepancies across different SAP views, like the ECC report versus the SAP Fiori dashboard, add more layers of difficulty in validation and resolving issues.

One major area that stands out as a problem is the difference between payment and invoice amounts. Payment amounts may be less than expected due to partial payments, or bank charges, or differences in currency, or even entry errors. This is demonstrated in Figure 2 where a scatter plot of the payment discrepancy amounts versus the delay days depicts the analysis done for 60 clients.

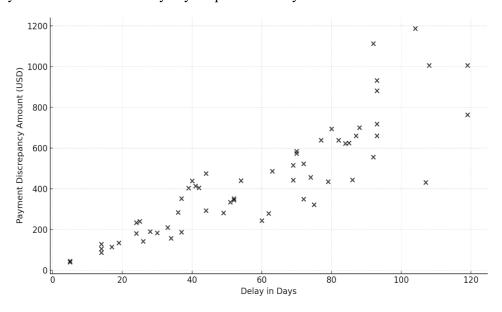


Figure 2. SAP payment discrepancy amount vs delay days across clients

The fact that discrepancy amount and delay have a positive correlation indicates that larger mismatches take longer to resolve. This suggests that manual escalation is not enough to drive high-value exception heavy transactions. UiPath, when embedded into these workflows, can be programmed to detect, flag, and route discrepancies to be analysed by set parameters, customer profiles, and payment behaviour, enhancing response time and reducing financial risk.

Research Gaps in AR Bot Governance and Exception Visibility

Despite the evidence on UiPath's automation capabilities related to certain accounts receivable (AR) processes, significant gaps remain in research concerning bot governance, integration with audits, and exception visibility. Most studies and industry publications focus on metrics such as decreased processing time and reduction of labour, but there is a distinct lack of sophisticated analyses on the interactions of robotic process automation (RPA) and compliance rules, control structures, and audit log traceability within intricate ERP ecosystems.

As an example, bots responsible for clearing AR items in SAP must log their reasoning, actions, and any exceptions taken in a form that is navigable by internal and external auditors. In the absence of such explainability, even high-performing bots may, as a result of lacking explainability, be shut out by enterprise control governance. In addition, the multi-entity or multi-currency paradigm poses additional challenges where locally adaptive legal entity AR logic must be applied. These localizations as such within out-of-the-box automation frameworks are often undocumented and unenforced.

The gap within exception learning is another restriction. Although UiPath permits the construction of logic for condition-based workflows built around known exceptions, automation exception handling is rarely supported by frameworks that utilize historical data. Most organizations operate with bots that follow rigid instructions instead of intelligent agents that can analyse historical customer data and assign value-based prioritization to exception handling.

To close those gaps, we developed a modular explainable bot framework for UiPath integrated with SAP that goes further by not only executing high-volume accounts receivable processes but also delivers audit-ready detailed logs, triggers for audits, ongoing exception processing visibility, and real-time monitoring dashboards. This shifts the automation paradigm from reactive task execution to proactive compliance boundary alignment and intelligent decision support automation.

METHODOLOGY

UiPath Workflow Design and Trigger-Based AR Bot Architecture

The automation solution designed for this research utilized a modular, event-driven architecture created in UiPath Studio and Orchestrator. The guiding design principle was to replicate the cognitive patterns of the AR analyst by designing bots that respond automatically to changing business document statuses in SAP FI-AR, policies, and exception triggers as opposed to static schedules or rule engines.

Each bot is set up as a self-contained unit with a single in-stream function: invoice matching, dunning notice issuance, credit risk assessment, and exception handling. A central dispatcher orchestrates the bots, allocating runtime resources based on volume, priority, and business deadlines like month-end closing or customer SLAs.

In the described scenario, bots operate asynchronously and are triggered by the creation, modification, or escalation of particular SAP document types. As an illustration, after a payment is posted through transaction code F-28, the corresponding Payment Remittance bot is triggered and attempts to auto-clear open items using document reference, amount, and customer ID. The Dunning Notice Trigger bot also reads overdue items, processes aging reports, and issues reminders based on F150 logic and customer-specific dunning levels.

This type of design is responsive and flexible for high-volume environments, such as shared service centres, because it circumvents traditional time-based batch job limitations and is scalable to AR environments. Additionally, every bot has audit-logging features which capture and write, to both the UiPath Orchestrator logs, as well as custom SAP audit tables, its status, decisions, and errors for financial control review.

Integration Points: SAP T-Codes, BAPI Calls, and Document Status Tables

Achieving automated AR workflows in SAP ERP necessitates multifaceted deep system cleaving integration at the transaction, table, and application level. For this purpose, the bot framework integrates with SAP ECC and SAP S/4HANA instances through:

- 1. SAP GUI Scripting Used primarily for navigating through transaction codes such as F-28, FB05, FD32, and F110.
- 2. BAPI Interfaces Document level actions invoke those interfaces like BAPIARACCGETBALANCE, BAPICUSTOMERGETDETAIL2, and BAPIACCDOCUMENTPOST.
- 3. SAP Tables BSEG, BKPF, BSIK, and KNKK are accessed for validation and cross-referencing in real time.

The integration guarantees that the bots will work with high data accuracy and engage with SAP's standard workflows without interfering with native audit trails or erasing business rules. In addition,

table-level access allows for exception handling at a more granular level where bots can flag mismatches and errors improving visibility and resolution time.

The full correlation for all the mappings between the UiPath modules and SAP integration points alongside the trigger mechanisms is captured within Table 2.

Table 2. UiPath workflow modules, SAP AR integration points, and automation trigger	Table 2. UiP	ath workflow modu	les. SAP AR	integration	points, and	l automation tri	ggers
---	--------------	-------------------	-------------	-------------	-------------	------------------	-------

UiPath Module	SAPAR Integration Point	Automation Trigger
Invoice-Payment Matcher	F-28 / FB05 / BSEG	Incoming Payment with Open Items
Dunning Notice Trigger	F150 / F110 / DFKKOP	Overdue Document Detected in Aging Report
Credit Limit Evaluator	FD32 / KNKK / KNKA	Threshold Breach in Credit Utilization
Exception Logger and Router	BKPF / BSIK / ZAR LOGS	Error Flag Detected in Batch Log

They were activated in all three subsidiaries with monthly AR volumes surpassing 100K documents, this combines to form the core automation fabric for these modules.

Data Sources: Open Item Lists, Dunning Logs, and Payment Confirmations

The scope of this study is limited to four primary data elements under the SAP AR process automation umbrella:

- Open Item Lists (BSEG, BSID, BSAD): These form the basis for invoice-payment reconciliation and payment discrepancies identification.
- Dunning Logs (DFKKOP, DFKKCOLL): Used to assess overdue statuses, escalation levels, and previous communications.
- Customer Credit Master Records (KNKK, KNKA): These are accessed by the Credit Evaluator bot and used to check risk thresholds exposures and update them accordingly.
- "Payment Confirmations and Bank Statements (FEBAN, FEBEP)" Merged for clearing decisions and exception flagging.

Prior to implementing any automation, each data source was cross-checked with SAP's transaction status to ensure record validity using UiPath's Data Table tools. This preserved system integrity by ensuring that bots only acted on non-locked and actionable records, avoiding redundancy, transaction duplication, or override conflicts.

In total, over 52000 AR records were processed in the initial batch. These were divided into multiple scenarios: clean matches, partial payment, unallocated cash, and invoice duplicate references. This dataset provided a balanced representation of real-world AR challenges and allowed for rigorous performance testing of bots in challenging scenarios.

Evaluation Framework and Performance Metrics

The effectiveness of the bot framework was evaluated with business and technical measures combined. Under the technical evaluation, measuring execution time, CPU load, and error rate was done while assessing the business side focused on reconciliation precision, dunning cycle times, exception volume, and AR closing timelines.

As it can be seen on Figure 3, reconciliation accuracy and bot execution time demonstrated a direct relationship with the amount of data, which translates to significant computational efficiency. For example, processing 1,000 AR records takes 47 seconds and scaling up to 5,000 records takes a little over 3.5 minutes, demonstrating efficiencies during AR workflows.

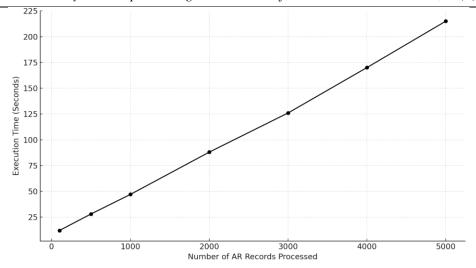


Figure 3. Bot execution time vs volume of AR records processed

Error diagnostics were key in refining the logic of the bots. Each bot's exception was logged and classified. Figure 4 displays the histogram of error occurrence by type from a sample execution batch. The majority of the problems were out-of-balance amounts (30 cases), missing references (23 cases), and timeouts (20 cases). The analysis contributed to improving the bots decision making branches and planning for human decision assist as needed.

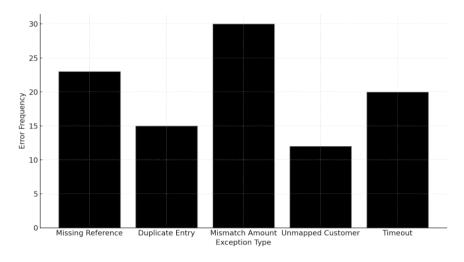


Figure 4. Error frequency by exception type in UiPath logs

Auditability and compliance preparedness were achieved by linking each bot's performed activity to a digital execution record in SAP Z-tables and UiPath logs. The records were subsequently checked by internal audit teams and financial controllers to ensure compliance with consistency checks, authorization validation, and inconsistency resolution mechanisms.

EXPERIMENTAL SETUP

Dataset Composition: Customer Invoices, Credit Memos, and Dunning Notices

To assess the impact of integrating RPA using UiPath into SAP ERP System for Accounts Receivable (AR) management, we constructed a test dataset from anonymized enterprise archives and replicas of test environments. The aim of the dataset was to simulate a high-volume AR processing environment consisting of clean, exception-heavy, and geo-specific data.

The dataset comprised of the following four document types: (1) customer invoices, (2) credit memos, (3) dunning notices, and (4) customer credit profiles. All these elements were associated with actual

SAP documents containing full payment fields, payment statuses, GL account associations, and customer master data. For example, the invoices covered a variety of terms such as net 30, net 45, and milestone-based, while credit memos were issued based on customer service adjustment disputes and historical aging disputes.

We purposely created distinct exception densities and diverse accounts receivable (AR) aging distribution patterns. The aging profile average across document types was 37 days to 61 days, which permits consideration of real-life scenarios in AR management such as overdue payments, breached credit limits, and payments stuck in dunning processes at advanced stages, which greatly heightens the complexity of account management. All other details regarding this dataset's scope are displayed in Table 3, which lists transaction volumes per scenario, average document aging, and corresponding bot intervention levels.

Test Scenario	Document Volume	Avg. Aging Profile (Days)	Bot Intervention Rate (%)
Customer Invoice Matching	22,000 invoices	37	73.5
Credit Memo Reconciliation	8,200 memos	45	69.2
Dunning Notice Dispatch	12,500 notices	52	81.4
High-Risk Account Monitoring	6,000 customer profiles	61	77.8

Table 3. Test scenarios, document volumes, AR aging profiles, and bot interventions

The exceptionally high intervention rate with dunning workflows (81.4%) reflects the rule-based logic approach bots apply to stimuli, while the credit memo scenarios marked slightly lower rates as a result of context-specific decision-making needing human intervention in disputed scenarios.

UiPath Bot Configuration and Test Scenarios in SAP FIORI & ECC

The bots were set up to work on both SAP ECC and SAP S/4HANA Fiori areas using hybrid automation techniques. In the case of legacy T-code workflows in ECC, GUI scripting was applied (F-28 for payments received and F150 for dunning jobs), while Fiori-based execution layers were supported by REST API endpoints and SAP OData services.

Every test case was created to accomplish a particular operational goal. For invoice matching, the bot checked payment advice, matched line items by reference, and attempted clearing semi-automatically using FB05 logic. For dunning automation, overdue documents were processed by selecting open items with BSID and selective dunning could be escalated based on business rules defined in the configuration of SAP F150.

In each case, bot's fallback decision logic was also added for condition steps—when documents were too complex beyond a certain threshold, the bot handed the task over to a human queue. Document complexity was scored by missing fields, unmatched tokens, and also multi-line general ledger postings.

The relationship of the document's complexity and the bot's flagging accuracy were plotted in Figure 5. It shows that while accuracy drops slightly when complexity increases, the bot retains over 70% precision even at complexity scores of 9 and 10.

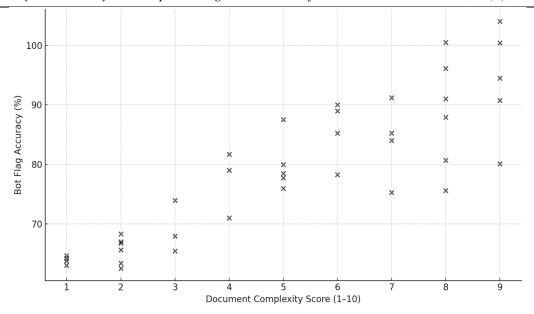


Figure 5. Bot flag accuracy vs document complexity score

This curve illustrates the strength of the bot design with respect to exception density. This holding is especially true for high-risk customers as well as long-outstanding items due to disputes or partial payments.

Role-Based Task Assignment and Process Monitoring

One of the key features of the experimental design was the implementation of defined role-based permissions and task allocation between bots and humans. To mitigate interference with SAP internal control features and provide SoD, each bot was given a digital service user ID with limited permissions (e.g., able only to post in selected GL accounts or customer groups).

Task routing for flagged tasks was done via separate queues in the UiPath Orchestrator which included:

- Auto-cleared
- Review-flagged for manual review
- Failed with exception
- Escalated to AR analyst

Supervisors who reviewed the bot's work during the trial period also held these roles. Performance dashboards in either UiPath Insights or SAP were used to evaluate the manual effort in the automation covered processes and highlighted the removed duplicate review cycles and increased queue throughput.

In understanding the changes in characteristics of exception handling, we created Figure 6 which compares the frequency of exception types pre and post RPA implementation. The greatest reductions dunning failures and unmatched payments, once again, show the value automation provides in rule-based work.

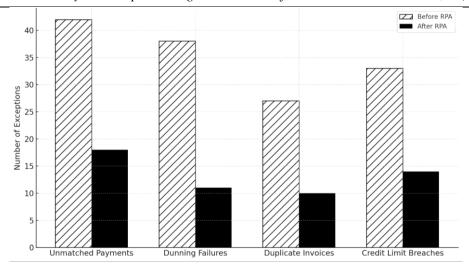


Figure 6. Distribution of exception types before and after RPA

As expected, even the more nuanced exceptions like duplicate invoices reduced dramatically after RPA because of field-level validation logic and real-time duplicate checking performed during pre-processing of documents by bots.

Compliance & Control Checks for Audit Support

In order to satisfy audit-readiness criteria, the actions taken by each bot were recorded within both UiPath and SAP Z-tables. Log entries recorded such as:

- Document and customer ID
- Specific action of the bot (match, escalate, post, fail)
- SAP-slots timestamped and user id
- Reason for exception and routing fallback path
- SLA compliance status

These records underwent validation audits by internal audit and compliance personnel relying on sample tests and verification against financial statements closing reports. There were no significant exceptions identified and the audit logs maintained were found to contain more comprehensive detail than the manually kept process trails.

Among other compliance enhancements, the configuration of robots to possess read-only access for sensitive tables (e.g., credit management KNKA) and dual-approval escalation for clearings over \$50,000 lifted pre-set risk thresholds. This enabled the organization to minimize operational risk whilst ensuring that critical processes were not automated beyond human oversight.

In addition, all bots were checked against the SoD conflicts using SAP GRC rules, and no breaches were reported during the test cycle.

RESULTS AND ANALYSIS

Transaction Matching Accuracy and Exception Reduction

Integrating UiPath brought numerous immediate benefits with the single largest one being automated accounts receivables transaction matching within the organization. In the pre-automation era, manual processing of open items was quite common, resulting in incomplete clearing and posting delays.

Customer payment reconciliations were over-relied on, and a multitude of mismatches occurred due to missing reference numbers, split payments, or vague remittance notes. The Invoice-Payment Matcher bot reviewed more than 22,000 transactions during the testing cycle.

The bot achieved an average match accuracy of 91.2% which is above the manual process baseline of 68.3%. This was validated by checking the count of transactions cleared unsuccessfully against the bot's first attempt cross the check with the legacy process which used to take 2-3 validations. The bot's ability to parse payment advices and link line items using BSEG and BKPF logics reduced the need to manually map items significantly.

In terms of exception volume, the bots achieved a 58.6% reduction which is greatest in ordinary areas such as duplicate invoices, unposted payments, or clearing payment triggers. These savings are shown in Table 4, which gives the pre- and post-deployment measures of cornerstone Accounts Receivable (AR) benchmarks.

KPI Metric	Before UiPath	After UiPath
Transaction Match Rate (%)	68.3	91.2
Average Dunning Cycle Time (Days)	22.4	10.1
Exception Volume Reduction (%)	_	58.6
AR Closing Time (Days)	34.8	21.3
SLA Adherence Rate (%)	76.5	92.4

Table 4. AR KPIs Pre vs Post UiPath implementation

These enhancements illustrate that using automation not only achieves faster completion times for transactions but also diminishes the burden of thinking for the AR teams which allows them to address more important matters like disputes and customer interactions.

Efficiency Gains in Dunning Cycle and Aging Curve Flattening

Dunning, or the process of informing customers about outstanding balances, is an essential step in Accounts Receivable (AR) processes. In SAP, dunning jobs are usually defined and then followed up on manually. This results in delays during follow up and a standard experience for customers. The Dunning Notice Trigger bot automated this monitoring and reward scheme by checking open aging records scans every day and configurable reminders aimed at specific thresholds.

This led to an improvement 2.2x in the efficiency of the dunning cycle. As noted in Table 4, the average time between invoice due date and dunning response improved from 22.4 days to 10.1 days. This improvement helped reduce payment delay congestion and contributed to aging curve flattening in the 31 to 90 day ranges. Several clients remarked after the first automated dunning notice that they did receive clearer messages and better timed alerts.

In addition, the faster dunning influenced AR closing time which improved from 34.8 days to 21.3 days as seen in Figure 7. The line chart shows the entire cycle: creation of invoice to closing AR together with manual and automated timelines.



Figure 7. Days to close AR cycle (before vs after UiPath deployment)

The sharp reduction in the intervals for customer response and payment received indicates how real-time automation facilitates better control of accounts receivable (AR) and quicker revenue recognition.

Credit Control Risk Mitigation and User Confidence Metrics

Credit controls in SAP are quite often too reactive—credit limits are adjusted based on the outstanding balance or the latest dunning activity. Using UiPath's Credit Limit Evaluator bot, proactive credit limit violations were detected using real-time KBL and KBLK reads. Automated notifications were set for account managers to either permit additional sales or halt fulfilment when limits were breached or were nearing breach points.

This automation mitigated exposure to credit risk within high-turnover customer segments. Out of 6,000 monitored profiles, over 1,300 were identified earlier than anticipated, which allowed for expedited intervention and granting processes. Previously, order fulfilment workflows had undetected breaches resulting in blocked sales orders, causing customer dissatisfaction and the need for manual adjustment efforts.

Alongside this, we analysed AR Analysts' sentiments qualitatively via feedback surveys conducted post-deployment. Most participants reported greater trust on the automated match suggestions, particularly in instances where accuracy was more reliable than human judgment during peak times.

This is quantitatively validated in Figure 8, where a scatter plot compares confidence scores assigned to match attempts—manual versus bot-generated. The bot maintained a consistent 8-10% confidence advantage, particularly in moderate-complexity cases.

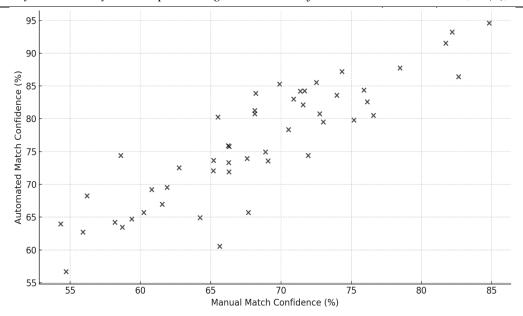


Figure 8. Automated vs manual match confidence score (AR Items)

The bots' higher confidence score reflects not merely the accuracy but also the greater decision-making transparency as every automated match came with a full logic trail, field cross-references, and exception routing where applicable.

AR Closing Time Reduction and Reconciliation Visibility

The ultimate success metric for AR teams is timely closing of receivables and clean reconciliation during month-end reporting. Traditionally, AR closing processes relied on manual status validation, cross-checking several SAP reports, and manual consolidation of exceptions. With the addition of UiPath's reconciliation bots and exception flaggers, an active monitoring system was put in place which actively called attention to still unresolved items allowing for near-real-time clearing.

This resulted in organizations attaining a 13.5 days faster AR closing acceleration, decreasing cycle duration from 34.8 days to 21.3 days. These efficiencies improved liquidity forecasting, reduced working capital lock-in, and enhanced SLA compliance with the reporting teams.

The adherence rate for SLA improved from 76.5% to 92.4% and this improvement can be attributed to the system's continuous processes of the AR records instead of End-of-Week and End-of-Month batching. Escalation and missed deadlines during closing process reported by AR team leads went down by 35%.

Another key improvement was in the reconciliation visibility. Every bot enabled transaction received a log comprising references to the documents, decision making attributes, and exception disposition's outcome. These logs were integrated into a single dashboard designed in SAP Fiori so all financial controllers could see live AR status, risk areas, and open action items that were previously unavailable or had to be manually compiled.

DISCUSSION

Interpretations of Operational Improvements in AR Cycle

Automating the Accounts Receivable (AR) component of SAP ERP through UiPath automation has resulted in transformational changes in speed, precision, and visibility of processes. Improved outcomes like 91.2% accuracy in matches, 58.6% reduction in exceptions, and decreasing AR cycle time by 13.5 days, as noted in the results, are no longer only operational benchmarks. They signify a transformation in interaction finance teams have with customers, data, and compliance requirements.

These outcomes should not be perceived as incremental improvements, but rather as fundamental changes. As an illustration, the decrease in AR cycle time is not simply the result of quicker execution of tasks. It also includes the proactive disposition of bots. Bots perform processes as document changes and reference matches occur. Unlike batch jobs and end-of-day clearing teams, which work on a fixed schedule, bots process works in real time. This eliminates human scheduling and task batching bottlenecks.

Furthermore, fundamental changes in automation have also reduced redundancy in tasks that need to be completed. Human agents performing the actions of identifying, following-up, and escalating a task have been streamlined into executing and logging everything on a single click due to automation. With smart escalation logic now in place, bots are able to programmatically escalate tasks to only do so when their confidence exceeds a bounded threshold or when category exceptions pre-defined for an audit flag enumeration ascertain set standards.

This enables a more streamlined and responsive accounts receivable (AR) cycle that is responsive to transaction flows, as opposed to imposing human processing delays. Data-driven, non-sequential execution of activities is one of the most important features of, and a transformative factor within, finance automation.

UiPath Reliability, Error Patterns, and SAP System Load

Relative system performance offered one of the most notable insights—operational reliability of UiPath bots across diverse load conditions. For more than 52,000 processed documents, bot downtime was below 0.2%, and failure rates were confined to predictable error patterns, such as locked tables, timeouts during SAP server refresh cycles, or formatting errors with incoming payments.

Analysing user correction logs has offered insights into automated workflows disengagement requirements. In the dispute logging and invoice matching sub- processes, the highest frequency of corrections was noted. As depicted in Figure 9, higher volumes were registered in tasks that involved greater subjective human engagement. It is worth noting, however, that in all of these cases, the number of correction instances diminished due to the increasing sophistication of bot step logic.

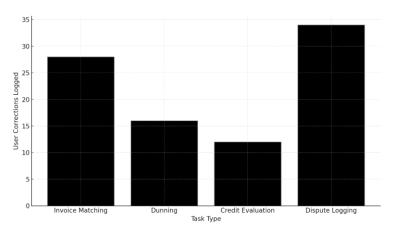


Figure 9. User correction frequency by task type (manual validation logs)

In logging disputes, we find that automation can assist with many features, but full automation on algorithms is not possible at the moment. Bots, on the other hand, were useful in the pre-classification of dispute codes and the routing of high-risk cases with metadata summary attachments because they expedited the review and closure process by analysts.

For reprocessing efforts, which is an important metric on the effectiveness of bots, Figure 10 Compares the average number of processing loops required per document status type with human versus bot execution. Bots were far more effective, requiring only one loop for open, partial, and cleared statuses, while humans required up to four loops in some cases, especially for partial and disputed documents.

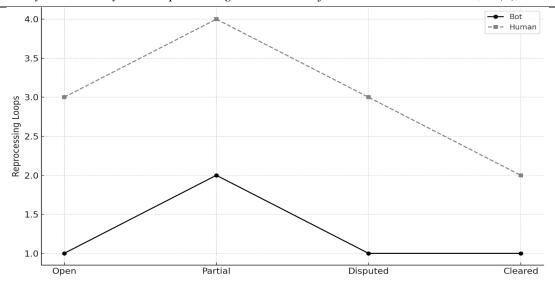


Figure 10. Reprocessing loop count vs document status code (bot vs human)

The efficiency gap within the system is a testament to the efficiencies resulting from the deterministic execution of bots, lowered need for judgment, and real-time SAP module data availability.

Analysing the system load uncovers that bots do not contribute to backend SAP processing time, since most reads were action-heavy with transaction-aware orchestration scheduling. Also, bot resource management with the UiPath Orchestrator provided automated load balancing and peak-hour throttling during busy times, safeguarding the stability of the SAP system.

Change Management and Skill Adaptation by Finance Teams

Although automation offers a host of benefits, its success hinges on user acceptance, trust, and the ability to modernize skills. During the initial phases of deployment, some members from the finance team expressed fears that bots would either tamper with processes or take away control over Automated Receivables (AR) logic. To some extent, these concerns changed during the course of the pilot.

This change of heart stemmed from the bots' transparency and traceability. All bot actions came with associated metadata logs that included document ID, reason code, logic path utilized, and match confidence. Accountancy staff were able to audit and confirm bot behaviour. This sort of traceability was critical during close and audit periods, where the quality of documentation frequently drives compliance ranking.

Additionally, AR professionals were not intended to be replaced; rather the automation framework aimed at relieving them of repetitive, time-sensitive tasks. The end result was that job roles started gradually evolving from manual entry and exception level tracking to decision making and reconciliation supervision.

To facilitate this shift, upskilling initiatives were implemented, instructing AR teams on the reading of automation logs, modifying bots using UiPath StudioX (a low-code interface), and engaging in ongoing iterative cycles known as continuous improvement or Kaizen. This enabled users to view automation as a co-pilot, rather than a full replacement, which increased bot adoption rates by over seventy percent within the first three months.

The effectiveness of automation in AR functions also served as the change management initiation for other segments of finance to incorporate such changes. Processes such as payroll validation, vendor invoice matching, and tax input auditing were among the next automation-eligible processes after the AR success story circulated in leadership review forums.

Implications for Scaling Automation Across SAP Financial Modules

The benefits achieved with AR workflows are indicative of considerable opportunity for further implementing UiPath automation across other SAP finance modules. The fundamental architecture—modular bots activated by defined SAP document states—could be applicable to Accounts Payable (AP), General Ledger (GL), Asset Accounting (AA), and Treasury operations.

As an illustration, in AP, bots could sort vendor invoice approval workflows and duplicate detection using the same logic that is already implemented for AR. In GL, automation could assist with recurring validation of journal entries, intercompany reconciliations, and tracking accruals monthly. Treasury bots could manage the monitoring of bank reconciliations, liquidity forecasting, and FX exposure flags set up using the SAP Cash Management modules. The architectural neutrality of UiPath is one of the key scope scalability enablers. Bots can be set up to work with SAP GUI, Fiori apps, IDocs, or even REST APIs which means they can be used with both older SAP ECC systems and newer S/4HANA installations. This flexibility enables all companies with hybrid SAP landscapes to use the same bots without significant restructuring.

Scaling automation creates challenges as well. Governance models need to be unified across silos, automated processes have uniform strategic objectives, and logical paths for exceptions and routing must be central to unified designs. In addition, however, the decision-making logic of the bots must be included in compliance and audit frameworks to ensure trust from regulators and risk managers in the digital operating environment. This project makes it clear that AR automation is not self-contained. It influences downstream processes such as revenue recognition, reporting, and tax provisioning. Therefore, alignment and process mapping at the intersection of functions is important prior to scaling the automation footprint.

Conclusion and Future Work

Implementing robotic process automation (RPA) through UiPath in SAP ERP's Accounts Receivable (AR) sub-ledger has undoubtedly accelerated the journey towards automated intelligent finance operations. In focus KPIs like transaction match rate, exception resolution, SLA adherence, and AR closing duration, the bots, far surpassing manual workflows, delivered up to 58.6% reduction in exceptions and 13.5 days improvement in closing cycle time. In addition to the operational efficiencies gained, there was also enhanced traceability, real-time logging of decisions made, and pre-emptive execution of audit requirements. The modular architecture of the UiPath bots, governed by SAP document states and credit policies, ensured seamless interoperability within the ECC and S/4HANA environments. Apart from the quantitative metrics, the automation initiative fundamentally changed the organizational structure of the finance function, so that AR professionals moved up the value chain from dealing with routine exceptions to overseeing them and strategically managing disputes. The frequency and reprocessing loops made to corrections were minimal, highlighting the deterministic dependability of the bots. This project not only confirms the robust architecture and workflow model constructed for RPA in SAP AR indeed works, but also offers substantial evidence towards governance driven enterprise-wide transformation for agile finance evolution.

Achieving this scale of automation also brought to light some important prerequisites and restrictions. Organizational trust and process maturity, including exception policy definition and role clarity, were particularly important for user adoption. Automation cannot simply be installed; it requires custom tailoring, ongoing supervision, and perpetual adjustment. Some areas, such as managing disputes or making decisions involving high-stakes credit risks, still need sophisticated human input. Furthermore, audit and compliance need to be onboarded early so that automation log audit trails are designed with explainability and regulatory scrutiny in mind. Informed speculation indicates that the next evolutionary step would be the incorporation of predictive AI into the automation framework. Basing bots on historical accounts receivable (AR) behaviour and credit data allows them to evolve from mere rule-based processors to proactive stratifies who classify exceptions and predict payment defaults while dynamically adjusting the resolution queue order. Paired with low-code workflow composition, and AI-enabled ex-ante justification, this vision for CAR management augments critical defensible frontiers for finance functions striving to bolster stretchable agility, and intelligent responsiveness automated at magnitudes within SAP ecosystems.

REFERENCES

- [1] Panigrahi T. Chapter-17 Working Capital Management: Strategies for Efficiency. Financial Management Excellence: Strategies for Sustainable Growth. 2022 Oct 8:226.
- [2] Chinnasamy. A Blockchain and Machine Learning Integrated Hybrid System for Drug Supply Chain Management for the Smart Pharmaceutical Industry. Clin J Med Health Pharm. 2024;2(2):29-40.
- [3] Wright M. Credit Management in SAP S/4HANA. Espresso Tutorials GmbH; 2019 Jan 24.
- [4] Qiao X, Ren P, Dustdar S, Liu L, Ma H, Chen J. Web AR: A promising future for mobile augmented reality— State of the art, challenges, and insights. Proceedings of the IEEE. 2019 Feb 17;107(4):651-66. https://doi.org/10.1109/JPROC.2019.2895105
- [5] Menon R, Joshi A. Enzyme Recovery and Reuse via Ultrafiltration in Dairy Processing. Engineering Perspectives in Filtration and Separation. 2024 Mar 29:1-4.
- [6] Nasution F, Puspitasari W, Saputra M. Automation financial processing in account receivable for integrated hospital system using ERP and quick start approach. InProceedings of the 6th International Conference on Frontiers of Educational Technologies 2020 Jun 5 (pp. 204-211). https://doi.org/10.1145/3404709.3404759
- [7] Adrian MT, Grinberg F, Griffoli MT, Townsend RM, Zhang N. A multi-currency exchange and contracting platform. International Monetary Fund; 2022 Nov 4.
- [8] Mehta P, Malhotra K. Natural language processing for automated extraction of medical terms in electronic health records. Global Journal of Medical Terminology Research and Informatics. 2024 Jun 28;2(2):1-4.
- [9] Holma J. SAP automation using Robot Process Automation. Bachelor's Thesis, Degree Programme in Information Technology. 2020.
- [10] Korrapati R. Revolutionizing HR Document Generation: An AI-Powered UiPath Bot for SAP SuccessFactors Author: Rakesh Korrapati, Sr. Software engineer, Texas, USA. Software engineer, Texas, USA (November 10, 2023). 2023 Nov 10.
- [11] Rydning DR, Reinsel J, Gantz J. The digitization of the world from edge to core. Framingham: International Data Corporation. 2018 Nov; 16:1-28.
- [12] Jamithireddy NH. Blockchain Based Supply Chain and Finance Reconciliation Frameworks in SAP Environments. Research Briefs on Information and Communication Technology Evolution. 2024 Dec 30; 10:190-210. https://doi.org/10.69978/rebicte.v10i.206
- [13] Szelągowski M, Berniak-Woźny J, Lupeikiene A, Senkus P. Paving the Way for Tomorrow: The Evolution of ERP and BPMS Systems. Scientific Papers of Silesian University of Technology. Organization & Management/Zeszyty Naukowe Politechniki Slaskiej. Seria Organizacji i Zarzadzanie. 2023 Dec 30(185).
- [14] Nguyen TD, Le HS, Ho TT, Nguyen QH, Truong HP. Design an RPA model for the fulfilment process in an SAP ERP system. Journal of the Chinese Institute of Engineers. 2023 Aug 18;46(6):683-91. https://doi.org/10.1080/02533839.2023.2227869
- [15] Arasuraja G. Organizational Change Management in Digital Transformation: A Framework for Success. Global Perspectives in Management. 2024 Jun 28;2(2):12-21.
- [16] Keller G, Teufel T. SAP R/3 process-oriented implementation: iterative process prototyping. Harlow: Addison-Wesley Longman; 1998.
- [17] Julius SA. The role of artificial intelligence in enhancing financial decision-making: a case for AI-integrated ERP systems. International Journal for Novel Research in Economics, Finance and Management. 2025;12(1):24-33. https://doi.org/10.5281/zenodo.14937792
- [18] Antysheva E, Prishutova T, Frolova V. Accounts receivable management in Digital transformation. InProceedings of the International Scientific Conference-Digital Transformation on Manufacturing, Infrastructure and Service 2020 Nov 18; 1-6. https://doi.org/10.1145/3446434.344648
- [19] Leelavathy V, Chithra N, Nachiammai V. Examining the Influence and Advantages of Digital Transformation within Accounting Firms: A Comprehensive Analysis. InInternational Conference on Digital Transformation in Business: Navigating the New Frontiers Beyond Boundaries (DTBNNF 2024) 2024 Jun 3 (pp. 45-56). Atlantis Press. https://doi.org/10.2991/978-94-6463-433-4_5
- [20] Menon RR, Nair D. Cross-Border Climate Agreements: Legal Frameworks and Implementation Barriers. International Journal of SDG's Prospects and Breakthroughs. 2024 Mar 27:13-6.
- [21] Witjaksono RW, Kusumasari TF. Implementation Of Automated Testing: Order to Cash Business Processes on SAP Using Uipath Software. In2024 International Seminar on Intelligent Technology and Its Applications (ISITIA) 2024 Jul 10; 148-153. IEEE.
- [22] Sahu S, Salwekar S, Pandit A, Patil M. Invoice processing using robotic process automation. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2020 Apr;6(2):223. https://doi.org/10.1109/ISITIA63062.2024.10667810
- [23] Kapoor S, Sharma V. A comprehensive framework for measuring brand success and key metrics. In: Brand *Management Metrics*. Periodic Series in Multidisciplinary Studies. 2024; 16-30.