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SUMMARY

Arterial Blood Gas (ABG) analysis is an important diagnostic tool in intensive care unit (ICU) settings
that provides valuable information about the patient's respiratory and metabolic status. However, in the
absence of predictive information, when testing is over-utilized or not planned, it can cause discomfort
to the patient, costs to the healthcare system, and overtax already burdened resources. This work develops
a predictive model that employs machine learning to classify acid-base imbalances and guides testing,
which will advance diagnosis and efficiency in practice. The primary data source for model development
was a dataset that included ABG profiles of ICU patients along with parameters of pH, PaCO., HCOs",
Pa0:, lactate, and clinical indications of hemodynamic stability, respiratory support, and therapeutic
interventions. Data pre-processing included: normalization, missing value imputation, and feature
scaling, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to create better class
balance to improve generalization. The predictive utility used a family of Support Vector Machine (SVM)
classifiers with linear, polynomial, and radial basis function (RBF) kernels, which were tuned using a
grid search and 10-fold cross-validation. The implementation framework was created in Python 3.11
using Scikit-learn, NumPy, and Panda’s libraries. The optimized SVM classifier achieved a maximum
accuracy of 93.02%, F-measure of 92.8%, precision of 93%, and an area under the ROC curve (AUC) of
0.97, for test data. The incorporation of SMOTE resulted in better class balance. This is the first
application of its kind, exploring machine learning algorithms to achieve such high-performance metrics
in the analysis of clinical ABG data obtained in the ICU, supporting and enhancing healthcare diagnostics.

Key words: arterial blood gas, respiratory imbalance prediction, machine learning, supervised
classification, support vector machine.

INTRODUCTION

In the management of patients with acute and critical illness. ABG testing provides accurate, real time
information on pH, partial pressure of oxygen (Pa0O:), partial pressure of carbon dioxide (PaCO.), and
bicarbonate (HCOs") levels, which are used to evaluate respiratory function, metabolic status, and acid-
base balance of critically ill patients [16].
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In critically ill patients in an intensive care unit (ICU) or general hospital setting, ABG testing is
frequently done to direct management decisions for patients, changing ventilatory parameters,
prescribing medications, or changing fluid therapy regimens accordingly. However, frequent ABG
testing can lead to increased patient discomfort, risk of hospital-acquired anaemia, and increased costs
because of increased laboratory use [32]. Therefore, determining the best frequency of ABG testing is
crucial for the balance between assessment of adequate monitoring and patient discomfort and decreased
resource use. ABG interpretation is an important, timely diagnostic tool in an intensive care unit (ICU)
for providing necessary information regarding a patient's respiratory status/metabolic status, acid-base
balance, and oxygenation [27] [34] [35] [36].

ABGs are regularly applied in the appropriate management of critically ill patients, particularly those
requiring mechanical ventilation, those in respiratory failure or derivations from normal metabolic
status. Despite it being an important, necessary quality of care when managing critically ill patients, the
frequency and timing of performing ABGs in the clinical setting have been contentious in critical care
settings. Furthermore, excessive testing contributes to higher healthcare costs, inefficient use of
laboratory resources, and an increase in workload for ICU staff [8] [25] [33]. Despite these concerns,
there is often no clear protocol guiding the frequency of ABG testing, and decisions tend to be based on
habit, subjective clinical judgment, or institutional practice rather than evidence-based guidelines.

The contents of the paper are organized as the sequence of related works in sections 2, material and
methods in section 3, data description in section 4, proposed work in section 5, results and discussion in
section 6 and finally the conclusions with future remarks in section 7, augmented with a list of references.

RELATED WORKSs

The main issues in this theme of blood tests at the ICU deal with not only patients’ further health control
but also clinicians making optimal decisions [22].

Minimizing the cost and discomfort for the patients is done by Nadkarni et al [1]. It helps us to identify
the risk of complications such as infection or hematoma. Marik et al [3] show the decision-support
models employed in critical care to improve resource management, clinical workflow efficiency, and
patient outcomes. The models employ clinical data to facilitate medical personnel in assessing the
appropriateness of test frequency and the need for diagnostic testing such as ABG. Langley, Wong. [5]
allege that ABG tests might help to optimize the test frequency and timing, consequently avoiding any
unnecessary testing. Kallstrom et al [7] discuss using ABG tests for various clinical conditions in critical
contexts. Blum et al., [9] suggest that eliminating unnecessary laboratory tests could be a simple way to
reduce costs without having any adverse effects on patient safety.

According to Capovilla et al [11], studies of technologies to continuously monitor or test blood gases
with less invasiveness may influence how frequently testing via arterial blood gas sampling will be
required. Their research found that a need for a testing approach, which was more deliberately
considered, would provide the same clinical relevance while decreasing the frequency of unnecessary
testing cited by Benjamin Cunanan et al., [13]. In addition, Delvaux et al., [14] claimed that clinical
decision support systems (CDSS) could increase efficiency by recommending an ABG test only if
clinically indicated. Thus, a CDSS would allow testing to decrease while maintaining patient care. As
reported by Stanski et al., [15], predictive models utilized in the ICU would allow clinicians to predict
clinical deterioration of patients, leading to diagnostic testing efficiencies, including ABG tests. These
models utilize predictive algorithms incorporating data such as, for example, pH and oxygen saturation
in conjunction with one another, and they would help identify patients who were likely to require ABG
evaluation, in which they would assist in reducing potential over-testing by Abd et al., [10].

Kallstrom et al., [7]. Explained in their guidelines that ABG tests should be performed based on clinical
need and recommended based on non-invasive methods, when possible, to reduce the frequency of
invasive ABG testing. It highlighted that algorithm-driven approaches to ABG testing, which focus on
clinical need, could be more cost-effective by Wilinska & Hovorka, [17]. Castro et al., et al [18] found
that these technologies could help reduce the frequency of invasive ABG tests, especially in stable
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patients. Verma & Kapoor, 2021 [6] found that machine learning (ML) models could significantly
reduce unnecessary tests, including ABGs, while enhancing the detection of clinical deterioration.

Kumaravel et al.,[19] applied machine learning algorithms with cost-sensitive classifiers to train and test
the IVF dataset, observing their influence on the resulting loss. Kajanan et al. [20] applied supervised
machine learning approaches to ABG in emergency care units (ECU) and intensive care units (ICU).
Doctors and nurses often face difficulties identifying the type of respiratory failure using ABG test
results.

METRIAL AND METHOD WORK

In this section, we provide the explanations for the terminology used in the context of relating the ABG
data to the prediction methods. Firstly, we skim through the performance of the matrix of the ML
methods, the next step involves utilizing SVM with different kernel types to better understand how the
proposed model can be optimized [30]. Thirdly, describing the data and analyzing its distribution is
essential for understanding the dataset's underlying structure [4]. Finally, performing an analysis of the
data structure, particularly (ABG: Attribute-Based Grouping), is crucial for identifying patterns or
groupings within the dataset that may not be immediately obvious. Table 1 contains three statistical
measures: mean, standard deviation, and variance.

Table 1. Attribute description with statistical analysis

Attribute Name Description Mean | Standard Deviation
S.No Serial No NA NA
NAME The name of the patients NA NA
SEX Gender of the patient (Male/Female) NA NA
pH Measures the acidity or alkalinity of blood. 0.772 0.129
Normal range is 7.35 - 7.45
spCO: Indicates respiratory function. Normal range 0.236 0.135
is 35 - 45 mmHg
Na (Sodium) Measures serum sodium levels. Normal range | 0.793 0.103
is 135 - 145 mmol/L
K (Potassium) Measures serum potassium levels. Normal 0.135 0.084
range is 3.5 - 5.0 mmol/L
Ca (Calcium) | Measures serum calcium levels. Normal range | 0.013 0.089
is 8.5 - 10.5 mg/dL
Lac (Lactate) Indicates tissue oxygenation and metabolic 0.144 0.133
status. Normal range is 0.5 - 2.2 mmol/L
HCT Measures the proportion of red blood cells. 0.503 0.142
(Hematocrit) Normal range for men is 40-54%, and for
women is 36-48%
HCOs Reflects metabolic function. Normal range is | 0.339 0.115
22 - 26 mmol/L
TCO- Includes bicarbonate and dissolved COs.. 0.407 0.166
Normal range is 23 - 30 mmol/L
SO:C Measures the percentage of haemoglobin
saturated with oxygen. Normal range is 95 -
100%.
0.906 0.154 0.023716
THBC Reflects the total amount of haemoglobin in 0.514 0.152
blood
Label Different class NA NA

In Table 1 gives various physical attributes measured in patients, together with their descriptions, mean
values, and standard deviations. pH levels specify blood acidity, with a mean of 0.772 and a standard
deviation of 0.129, though these values appear normalized. spCO., reflecting respiratory function, has a
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lesser mean of 0.236. Electrolytes such as sodium (Na) and potassium (K) are more important for cellular
function, with means of 0.793 and 0.135, respectively. Calcium (Ca), crucial for bones and cellular
activity, has a lower mean of 0.013. Lactate (Lac), shows metabolic status, averaging 0.144. Hematocrit
(HCT), measuring red blood cell ratio, has a mean of 0.503. Bicarbonate (HCOs) and total CO2 (TCOx),
reflecting metabolic and respiratory balance, show means of 0.339 and 0.407. SO-C, measuring oxygen
saturation, averages 0.906, while THBC, representing total haemoglobin, has a mean of 0.514. Standard
deviations highlight variability in patient data.

Clinical Parameters
There are three types of chemical experiments as clinical parameters as follows.

I. Respiratory Status: Monitored through parameters such as respiratory rate, oxygen saturation (SpO2),
and PaCQ.. II. Metabolic Status: Evaluated using bicarbonate levels, base excess, and pH. IIIL.
Hemodynamic Stability: Assessed using blood pressure, heart rate, and lactate levels.

Patient-Specific Factors

I. Underlying Conditions: Chronic respiratory diseases, renal impairment, and metabolic disorders. II.
Recent Changes in Therapy: Introduction or adjustment of mechanical ventilation, vasoactive drugs, or
renal replacement therapy. III. Clinical Deterioration: Signs of clinical instability, such as altered mental
status or sudden changes in vital signs.

Patterns of collecting the data

I. Standard schedule: Establish a baseline frequency for ABG testing (e.g., every 4-6 hours) for stable
patients. II. Dynamic Adjustments: Increase testing frequency if significant changes in clinical
parameters are detected, and decrease frequency if stability is confirmed. III. Procedure for monitoring:
Procedures and processes are in place for continuous monitoring of data and output recommendations
for ABG testing intervals.

SVM (Support Vector Machine) Classifier Algorithm

SVM is a powerful supervised machine learning algorithm primarily used for classification tasks, though
it can also be applied to regression [2] [12]. It is based on the concept of finding a hyperplane that best
separates the data points of different classes in the feature space [29]. The goal of SVM is to maximize
the margin between data points of different classes [24]. Here's a step-by-step breakdown of how the
algorithm works:

Steps in SVM Algorithm:

1. Input Data Preparation:

The algorithm takes a labelled dataset with n features and a corresponding target variable (class labels)
for training [21]. Each data point can be represented as a vector Xi = {Xil, Xi2,...Xi.} where n=12, with
class labels Yi€ {AC-RC, AC-RENC, AL-RENC, AL-RC, NORMAL}.

2. Choose a Kernel Function:

If the data is linearly separable, the linear kernel can be used. For non-linear data, SVM uses kernel
functions (e.g., polynomial, RBF) to transform the original feature space into a higher-dimensional space
where the data becomes linearly separable.

Popular kernels include:

e Linear Kernel: Best for linearly separable data.
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e Polynomial Kernel: For more complex boundaries.
e Radial Basis Function (RBF) Kernel: A common choice for non-linear problems.
3. Find the Optimal Hyperplane.

The algorithm searches for the hyperplane that best divides the data into two classes. Mathematically,
this hyperplane can be expressed as:

O'x+b=0 (1)
where (0 is the weight vector and b is the bias term.

The key is to maximize the margin among the five classes, which is the distance between the hyperplane

and the nearest data points (called support vectors) [31]. The margin is calculated as ”ZT” for each pair

of targets and aggregating these calculations
4. Maximizing the Margin:

The goal of SVM is to maximize the margin between the two classes while minimizing classification
errors. This is formulated as an optimization problem:

min %||CO||2 subeject to y; >1 ()

xi+ b=0)
The support vectors are the data points that lie closest to the hyperplane and influence its position.

5. Handling Non-Linearly Separable Data (Soft Margin and C Parameter):

If the data is not perfectly separable, SVM allows for some misclassifications by introducing a soft

margin. This introduces a penalty term controlled by a regularization parameter C. Hence, the
optimization problem becomes:

min %||(D||2 + C )&  subeject to Yi(w" 1-€  where € =0 3)

xi+ b=0) =
represents €;the degree of misclassification.

6. Kernel Trick for Non-Linear Data:

If the data is not linearly separable, the kernel trick is applied to map the data into a higher-dimensional
space where a linear hyperplane can be found. SVM avoids explicitly computing this transformation by
using a kernel to compute the dot product in the transformed space.

7. Solving the Optimization Problem:

SVM uses quadratic programming (QP) or specialized optimization techniques like the SMO (Sequential
Minimal Optimization) algorithm to find the optimal hyperplane. Once the optimization problem is
solved, we obtain the support vectors, which define the optimal hyperplane.

8.Prediction:

After training, the model uses the learned hyperplane to classify new data points. For a given test point
Xest the decision function is:

F(xgtesty) = O Xresy+ b = 0 @)
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If F(xwst) > 0, the test point is classified as +1, otherwise, it is classified as —1.

DATA DESCRIPTION

Data used in this article was collected from the lab Biochemistry testing lab at Sree Baalaji Medical
Hospital Chomped Chennai, Tamil Nadu, India. The dataset used in this study includes ABG

measurements from 202 ICU patients, classified into five categories:

Table 2. Five classification

Five Categories(classes) Description
ACIDOSIS-RC Respiratory Compensated Acidosis is characterized by low pH and elevated
pCOz

ACIDOSIS-RENAL-C Renal Compensated Acidosis is characterized by low pH and low HCO:s.

ALKALOSIS-RC Respiratory Compensated Alkalosis is characterized by elevated pH and low

pCOsa.s
ALKALOSIS-RENAL- Renal Compensated Alkalosis is characterized by elevated pH and high
C HCO:s.
NORMAL Absence of the above conflicts.

These five classifications in the data in Figure 1 show the nature of acid-base imbalances in patients,
whether they stem from respiratory or metabolic origins, and whether the body is compensating for the
disturbance as described in Table 2.

AC-RC

NORMAL
26%

AC-RENC
11%

AL-RC
9%

AL-RENC
35%

BAC-RC AC-RENC ®AL-RENC ®mAL-RC ®NORMAL

Figure 1. Data distribution

1. AL-RENC (35%): This is the largest portion of the dataset, accounting for 35% of the total data.
It indicates that this category, "AL-RENC," is the most common or frequent in the dataset.

2. NORMAL (26%): The second largest category is "NORMAL," making up 26% of the data. This
could represent a control or baseline group.

3. AC-RC (19%): The "AC-RC" category represents 19% of the data, which is a moderate portion
compared to the others.

4. AC-RENC (11%):"AC-RENC" contributes 11% to the dataset, making it a smaller but still
significant portion of the total data.

5. AL-RC (9%): The smallest category in this distribution is “AL-RC," which accounts for 9% of
the dataset.

Figure 1 shows a fairly balanced dataset, with some skew towards AL-RENC and NORMAL, which
together make up more than half of the dataset (61%). The other categories are lower in ratio, with AL-
RC being the smallest represented. Understanding this distribution is important for knowing whether the
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dataset is balanced or imbalanced, which can affect model performance, particularly in classification
tasks.

PROPOSED FRAMEWORK

We provide a flowchart-based structure for our proposed system for predicting models from the Arterial
Blood Gas (ABG) dataset [23]. This system aims to improve clinical decision-making using a Support
Vector Machine (SVM) classifier method and multiple kernel methods, along with fine-tuned numerical
parameters. The framework begins with data collection, in which pre-cleaned ICU ward samples (202
records) are collected and organized for analysis. The next step is preprocessing and feature selection,
where we ensure that only the most relevant points in the dataset inform the classification task. Five
target variables are determined that will inform the prediction [26]. A significant feature of the system
is the iterative training step that applies each kernel method (linear kernel, radial basis function (RBF)
kernel, polynomial kernel, and PUK kernel) to the SVM classifier. Concurrently, we will fine-tune
numerical parameters such as the margin, which determines the distance of the decision boundary and
the support vectors from the decision boundary and the exponent, which determines polynomial
transformations. In this iterative cycle, we examined different training arrangements to find the ideal
performing model. The next phase is to select the model with the best accuracy, generalization, and
computational efficiency. Selecting this improved model becomes the most accurate predictor and
provides clinical reasoning, as well as assisting healthcare professionals in their decision-making. The
way in which we presented the proposed system, as illustrated in Figure 2, ensures we propose a
systematic, data-driven method to the analysis of ABG's which has improved predictive performance
and propinquity to real-world settings encountered in the delivery of healthcare.

@

[ Collect an Arterial Blood Gas (ABG) Sample (Around) ]

¥

| Assign target variable as {AC-RC, AC-RENC, AL-RENC, AL-RC, NORMAL} |

[ Apply SVM Classifier with default parameter Training ]

/\

[Numerical Parameter [ Method Parameter j

A ‘/Ns

Exponent C Gamma Normalized | RBF Kernel ) [ Linear Kernel| [ PUK Kernel
Poly Kernel

-7

Select the final optimal model

Figure 2. Proposed architecture diagram
RESULTS AND DISCUSSION

We got results for 202 collected sample inputs for our proposed model. The two different types of
parameter results are provided below.

Patient-Specific Factors

Different kernel methods are used to modify the feature space to allow the data to be linearly separable:
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1. Normalized Poly Kemel: A polynomial kernel function or method that is possibly normalized
for better performance in particular specific cases.

2. RBF Kernel: A Radial Basis Function kernel, widely used in non-linear data classification.
3. Linear Kernel: A basic kernel used for linearly separable data.

4. Puk Kernel: This could refer to a specific kernel function, possibly used in advanced machine
learning methods.

Table 3. Different kernel types with accuracy and ROC

KERNEL TYPE |ACCURACY ROC
Linear Kernel 93.1507  0.976
Normalized Poly Kernel | 84.4749  0.787
Puk kernel 76.2557  10.868

RBF Kernel 32.4201 0.23

Table 3 shows the performance of different kernel types in terms of accuracy and ROC (Receiver
Operating Characteristic) for a classification task. The Linear Kernel has the highest accuracy of 93.15%
and ROC of 0.976, making it the best kernel for the dataset. The Normalized Polynomial Kernel has the
next accuracy of 84.47% with an ROC inferior to the Linear Kernel, with a score of 0.787 (which is still
decent). The PUK Kernel (Pearson Universal Kernel) performed moderately with 76.26% accuracy and
an ROC of 0.868. In contrast, the RBF Kernel performs poorly with a significantly low accuracy of
32.42% and ROC of 0.230, making it the least suitable for this classification task.

100.00 93.15
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00

84.47
76.26

32.42

Accuracy(%)

Kernel Types

® Linear Kernel ~ ®Normalized Poly Kernel — ® Puk Kernel RBF Kernel

Figure 3. Accuracy vs different kernel types

Figure 3, Here is a bar chart displaying the accuracy of different kernel types. It visually highlights that
the Linear Kernel has the highest accuracy (93.15%), followed by the Normalized Polynomial Kernel
(84.47%) and the PUK Kernel (76.26%). The RBF Kernel performs the worst with an accuracy of
32.42%

Figure 4, Here is the bar chart visualizing the ROC (Receiver Operating Characteristic) values for the
different kernel types. The Linear Kernel has the highest ROC at 0.976, followed by the PUK Kernel at
0.868, and the Normalized Polynomial Kernel at 0.787. The RBF Kernel has the lowest ROC at 0.230,
indicating the poorest performance.
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Figure 4. ROC vs different kernel types
Numerical Parameter
This chapter are explained about hyperparameters of the SVM model that need to be optimized. “C”
controls the trade-off between maximizing the margin and allowing some misclassification (soft margin
parameter). “Exponent” may refer to a specific parameter in a kernel method or another regularization
term.

Exponent

This chapter refers to the power applied to a particular parameter or feature in a model (for example, in
an SVM with a polynomial kernel, the exponent could refer to the degree of the polynomial).

Table 4 provides lists of various exponent values and their corresponding performance metrics, including
True Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision, and Recall.

Table 4. Different exponent(E) values with TP, FP, precision and recall

Exponent TP Rate FP Rate [Precision Recall
1 0.921 0.022 0.922 10921
1.2 0.911 0.023 0.909 00911
1.4 0.921 0.022 0.922 10.92
1.6 0916 | 0.019 0915 0916
1.8 0916 | 0.019 0915 0916

Table 4 shows that the performance of the model is fairly stable across different exponent values, with
the 1.0 and 1.4 exponent values providing the best balance of high TP Rate (or Recall), Precision, and
low FP Rate. Increasing the exponent beyond 1.4 leads to a small decline in performance, but the results
remain consistent and reliable. The consistently low false positive result across all exponent values
shows that the model is highly successful at avoiding false positive classifications.

The two figures (i.e. Figure 5 and Figure 6) show the results between the exponent value (E) and key
performance metrics: The True Positive Rate (TP Rate) or Recall is generally higher across all of the
exponent values, ranging between 0.906 and 0.921, indicating that the model is consistently identifying
most of the actual positives.
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EXPONENT (E) VS TP EXPONENT (E) VS RECALL
0.921 0.921 0.923
—e— TP Rate Recall
0.920| 0.9225 [ 921
0.918! 0.9200
0.916 0.9175 0916 0.916
3
o 0.914} g 0.9150
F o
0.912F ® 0.9125 09]1 0,911
0.910¢ 0.9100
0.908|
.906  0.906 0.9075 0.906 0.906
0-906 [ L L 1 1 L 1 L L
1.0 12 14 16 1.8 20 22 24 1.0 1.2 1.4 1.6 1.8 20 22 24
EXPONENT (E) EXPONENT (E)
Figure 5. Exponent vs TP Figure 6. Exponent vs Recall

Overall, the FP Rate stays low, within the 0.019 to 0.024 range, meaning there are few false positives in
Figure 7, which is good.

In Figure 8, the Precision is close to the TP rate, meaning that when the model makes a positive
prediction, it is usually correct. Precision fluctuates slightly, but it stays within the 0.905 to 0.922 range
overall.

0.024 EXPONENT (E) VS PRECISION
EXPONENT (E) VS FP 0.922 0.022
0023 0.023  0.023 09223 —— Precision
0.024 —e— Fp Rate
0.9200
0.023 [0.022 0.9175
= 915 0.915
0.022 © 0.9150
[
& & 0.9125
0.021 E
0.9100
0.020 0.9075 0.906
0.019 0.9050 ; ; ‘ | : , .
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
EXPONENT (E) EXPONENT (E)
Figure 7. Exponent vs FP Figure 8. Exponent vs Precision
Margin(C)

Table 5 below presents key performance metrics, including Margin (C), Accuracy, Precision, F-
Measure, and ROC.

Table 5. Different margin(C) values with accuracy, precision, F-Measure and ROC

Margin(C) |Accuracy |Precision [F-Measure ROC
0.1 57.0776 | 0.792 0.524  10.803
0.2 86.3014 | 0.878 0.859 0.94
0.3 88.1279 | 0.886 0.877  10.946
0.4 88.5845 | 0.889 0.881 10.955
0.5 89.9543 | 0.897 0.895  10.959
Table 5 represents the classification performance for various values of the parameter "C" (likely from a
support vector machine or a similar classifier). As "C" increases, the percentage of correctly classified
instances improves, while the percentage of imperfectly classified instances decreases.
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e At C=0.1, the classifier correctly classified only about 57% of instances, with a relatively high
43% incorrectly classified. As C increases, the accuracy improves dramatically, attainment over
86% for C = 0.2 and about 88% for C = 0.3 and C = 0.4. The incorrectly classified percentage
correspondingly decreases.

e From C = 0.5 to C = 0.8, the accuracy continues to increase somewhat, and the incorrectly
classified percentage decreases little by little. For example, at C = 0.5, the classifier correctly
classifies nearly 90% of instances and incorrectly classifies about 10%. By C = 0.8, the correctly
classified percentage increases to over 91%, while the incorrectly classified percentage drops
under 9%.

e Finally,at C=0.9 and C =1, the classifier achieves its highest performance, correctly classifying
around 93% of instances, with only about 7% misclassified. These results suggest that larger
values of C improve the model's ability to correctly classify instances, although there may be
diminishing returns after C = 0.9, where the performance plateaus.

Here is the line graph. Figure 9 illustrates the relationship between the parameter ‘C’ and the percentage
of correctly classified instances. As margin(C) increases from 0.1 to 1.0, the percentage of correctly
classified instances rises sharply at first, then plateaus near the 90% mark. This suggests that higher
values of ‘C’ generally lead to better classification performance, although the improvement levels off
after a certain point (around C = 0.9).

Even though the initial accuracy is around 57% at the initial point 0.1 in the thin margin of the SVM
classifier, at the very next iteration, it sharply rises to 86 % and maintains a higher band of values in the
rest of the points in the margin variations.

Figure 10 represents the precision values for different "C" margins. Precision measures the proportion
of true positive predictions out of all positive predictions made by the model.

e At C=0.1, the precision is 0.792, indicating that about 79.2% of the predicted positives are
true positives.
e As C increases, precision improves significantly, reaching 0.878 at C = 0.2 and 0.886 at C =

0.3.
e From C = 0.4 to C = 0.6, there is a steady rise in precision, culminating at C = 0.6 with a
precision of 0.903.

e The highest precision is obtained at C = 1, where the model got 93.1% precision, meaning that
most of its positive predictions are accurate.
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Figure 9. Margin vs Accuracy Figure 10. Margin vs Precision

Table 5 suggests that as the value of C increases, the model becomes more precise in its predictions,
correctly identifying more true positives with fewer false positives.

The graph in Figure 11 shows the F-Measure (or F1 Score) values for different "C" margins. The F
Measure is the consonant mean of precision and recall, providing a balance between the two, especially
when the distribution between positive and negative classes is uneven.
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e At C=0.1, the F-Measure is 0.524, which is comparatively low. This shows that the balance
between precision and recall is not optimal at this margin.
e As Cincreases to 0.2, the F-Measure significantly improved to 0.859, showing a much better
performance of the model.
From C = 0.3 to C = 0.5, the F-Measure continues to improve, reaching 0.895 at C =0.5.
e From C = 0.6 onwards, the F-Measure stabilizes around 0.9, representing that the model
maintains a high balance between precision and recall at these margins.
o The highest F-Measure is observed at C = 0.9 and 1, where the model reaches 0.929 and 0.93,
respectively.
Table 5 suggests that as the margin C increases, the model becomes better at balancing precision and
recall, with an optimal performance obtained at higher values of C.

The graph Figure 12 presents the ROC (Receiver Operating Characteristic) values for different
MARGIN(C) values, which measure the model's ability to classify between classes.

e AtC=0.1, the ROC is 0.803, indicating moderate classification performance.
e AsCincreases to 0.2, the ROC jumps to 0.94, showing a significant improvement in the model's
discriminatory power.
e The ROC continues to increase steadily from 0.3 to 0.7, reaching 0.968 at C = 0.7, which
indicates a high level of accuracy in distinguishing between positive and negative classes.
e From C = 0.8 to 1, the ROC value plateaus between 0.974 and 0.976, suggesting that further
increasing the margin doesn't significantly improve the model's performance beyond this point.
Overall, as C increases, the ROC values improve, showing that higher C values allow the model to better
differentiate between classes, with optimal performance being reached around C =0.9 and C = 1.

CONCLUSION

ICU patients require swift decisions by clinicians, who in turn demand support from software tools for
this purpose. Such tools are based on frameworks for optimizing models to yield improved performance,
supporting the ICU clinicians. In this paper, we designed the hyperparameters for the framework
represented by ‘Support Vector Machine’ and implemented the optimal model to classify the imbalances
in the blood tests to take accurate decisions governing patients’ conditions, and to recommend further
treatments accordingly. Hence, in this paper it has been proved the existence of an ML model framework
for predicting the ABG imbalances in an emergency situation prevailing in the ICU. It should be
extended to other types of testing samples to a similar type of classification algorithmic approaches. The
experimental results demonstrate that a decision-making model for predicting ABG testing for deciding
the normality of imbalances of gases of an ICU patient can yield up to a maximum of 0.93 accuracy, F-
measure 0.93, precision is 0.931, and ROC is 0.97. This being the first of its kind, it may be improved
further by increasing the data size and applying other types of learning techniques.

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 611



Ramadoss, S. et al: Exploring ABG imbalances ......... Archives for Technical Sciences 2025, 33(2), 600-614

Author Contributions: S. Ramadoss conducted the experiment and tabulated the results, compiled the
findings, and prepared the original article. Dr A. Kumaravel had investigated the feasibility of the
application over ABG data and the selection of a classifier.

Funding: This work was carried out without any external funding.

Data availability: The authors can provide the data upon a justifiable request. Requests for access to
the data should be directed to S. Ramadoss at ramadoss90@hotmail.com.

Code availability: Weka environment is considered, and the steps are shown in Figure 2 for deployment
and implementation.

Conflict/Competing: There is a conflict/competing of interest among the authors.
Declarations:

Informed consent: There was no involvement of human participants in this research for the purpose of
data collection. However, the data used were anonymized and handled with strict confidentiality. The
institution's ethics committee approved the study.

Institutional review board statement: Not applicable.

Consent to participate, authors are very much interested in research, especially in applying machine
learning algorithms, and they participate in the relevant projects [28].

Consent: for publication, the authors are ready to allow their works to be published.

Acknowledgements: The authors would like to thank the authorities of Bharath Institute of Higher
Education and Research for their support and encouragement.

REFERENCES

[1] Nadkarni A, Besic N, Yap J, Micik S, Chapple LA, Gnanamanickam E, Reddi B, Farquharson M.
Rationalising arterial blood gas sampling analysis in the intensive care unit: A before-and-after study.
Australian Critical Care. 2025 Jul 1;38(4):101237. https://doi.org/10.1016/j.aucc.2025.101237

[2]  Rosnelly R, Riza BS, Suparni S. Comparative analysis of support vector machine and convolutional neural
network for malaria parasite classification and feature extraction. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications. 2023;14(3):194-217.
https://doi.org/10.58346/JOWUA.2023.13.015

[3] Marik PE. Arterial blood gas analysis. In: Marik PE, editor. Evidence-Based Critical Care. Cham: Springer
International Publishing; 2014. p. 329-347.

[4] Salman R, Banu AA. DeepQ residue analysis of computer vision dataset using support vector machine.
Journal of Internet Services and Information Security, 2023;13(1):78-84.
https://doi.org/10.58346/JIS1S.2023.11.008

[5] Langley RJ, Wong HR. Predictive and prognostic tools for the management of sepsis in the intensive care
unit: a work in progress. Clin Chest Med. 2013;34(3):587-601.

[6] Verma S, Kapoor H. Machine learning for predictive maintenance: a cloud computing architecture and
lessons for a healthcare context. International Academic Journal of Science and Engineering. 2021;8(2):1-5.
https://doi.org/10.71086/IAJSE/V8I2/IAJSE0808

[7] American Association for Respiratory Care. AARC clinical practice guideline. Sampling for arterial blood
gas analysis. Respir Care. 1992;37(8):913-7.

[8]  Jalali Z, Shaemi A. The impact of nurses’ empowerment and decisionmaking on the care quality of patients
in healthcare reform plan. Human Resource Management. 2015;2(9):33-9.

[9] Blum FE, Lund ET, Hall HA, Tachauer AD, Chedrawy EG, Zilberstein J. Reevaluation of the utilization of
arterial blood gas analysis in the Intensive Care Unit: effects on patient safety and patient outcome. Journal
of Critical Care. 2015 Apr 1;30(2):438-el. https://doi.org/10.1016/j.jerc.2014.10.025

[10] Abd IS, Farazdaq H, Khudair AN. Integrative evaluation of adeA and adeS efflux gene expression, biofilm
production, and antimicrobial resistance in clinical isolates of Acinetobacter baumannii. Natural and
Engineering Sciences. 2025;10(2):342-351. https://doi.org/10.28978/nesciences.1744935

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 612



Ramadoss, S. et al: Exploring ABG imbalances ......... Archives for Technical Sciences 2025, 33(2), 600-614

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

(20]

(21]
[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

Capovilla J, VanCouwenberghe C, Miller WA. Noninvasive blood gas monitoring. Critical Care Nursing
Quarterly. 2000 Aug 1;23(2):79-86.

Chinnasamy. A blockchain and machine learning integrated hybrid system for drug supply chain
management for the smart pharmaceutical industry. Clinical Journal for Medicine, Health and Pharmacy.
2024;2(2):29-40.

Cunanan B, Muppa H, Orellana L, Bates S, McGain F. Blood gas sampling in the intensive care unit: A
prospective before-and-after interventional study on the effect of an educational program on blood gas testing
frequency. Australian Critical Care. 2024 Sep 1;37(5):755-60. https://doi.org/10.1016/j.aucc.2024.01.009
Delvaux N, Piessens V, Burghgraeve TD, Mamouris P, Vaes B, Stichele RV, Cloetens H, Thomas J,
Ramaekers D, Sutter AD, Aertgeerts B. Clinical decision support improves the appropriateness of laboratory
test ordering in primary care without increasing diagnostic error: the ELMO cluster randomized trial.
Implementation Science. 2020 Nov 4;15(1):100.

Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nature Reviews Nephrology. 2020
Jan;16(1):20-31.

American Association for Respiratory Care (AARC). Sampling for arterial blood gas analysis. Respir Care.
1992;37:891-897.

Wilinska ME, Hovorka R. Glucose control in the ICU using continuous glucose monitoring: What level of
the measurement error is acceptable?. In Diabetes Technology & Therapeutics 2015 Feb 1 (Vol. 17, Pp. A3-
A3). 140 Huguenot Street, 3rd Fl, New Rochelle, Ny 10801 Usa: Mary Ann Liebert, Inc.

Castro D, Patil S, Zubair M, Keenaghan M. Arterial blood gas. StatPearls. 2024 Jan 8.

Kumaravel A, Vijayan T. Comparing cost sensitive classifiers by the false-positive to false-negative ratio in
diagnostic studies. Expert Systems with Applications. 2023 Oct 1;227:120303.
https://doi.org/10.1016/j.eswa.2023.120303

Kajanan S, Kumara BS, Banujan K, Prasanth S, Manitheepan K. Classify the outcome of arterial blood gas
test to detect the respiratory failure using machine learning. In2022 International Conference on Decision
Aid Sciences and Applications (DASA) 2022 Mar 23 (pp. 1139-1143). IEEE.
https://doi.org/10.1109/DASA54658.2022.9765012

Ramadoss S, Kumaravel A. Medical dataset for arterial blood gas analysis [dataset]. Kaggle. 2025.
Ayala-De la Cruz S, Arenas-Hernandez PE, Fernandez-Herrera MF, Quifiones-Diaz RA, Llaca-Diaz JM,
Diaz-Chuc EA, Robles-Espino DG, San Miguel-Garay EA. Human-in-the-Loop Performance of LLM-
Assisted Arterial Blood Gas Interpretation: A Single-Center Retrospective Study. Journal of Clinical
Medicine. 2025 Sep 22;14(18):6676. https://doi.org/10.3390/jcm 14186676

Ozdemir H, Sasmaz MI, Guven R, Avci A. Interpretation of acid—base metabolism on arterial blood gas
samples via machine learning algorithms. Irish Journal of Medical Science (1971-). 2025 Feb;194(1):277-
87.

Guo J, Wu H, Chen X, Lin W. Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data
classification. Applied Soft Computing. 2024;150:p.110986. https://doi.org/10.1016/j.as0¢.2023.110986
Guido R, Ferrisi S, Lofaro D, Conforti D. An overview on the advancements of support vector machine
models in  healthcare applications: a review. Information. 2024 Apr 19;15(4):235.
https://doi.org/10.3390/info15040235

Yu H, Saffaran S, Tonelli R, Laffey JG, Esquinas AM, de Lima LM, Kawano-Dourado L, Maia IS,
Cavalcanti AB, Clini E, Bates DG. Machine learning models compared with current clinical indices to predict
the outcome of high flow nasal cannula therapy in acute hypoxemic respiratory failure. Critical Care. 2025
Mar 7;29(1):101.

Mousavinejad SN, Lachouri R, Bahadorzadeh M, Khatami SH. Artificial intelligence for arterial blood gas
interpretation. Clinica Chimica Acta. 2025 Oct 29:120691. https://doi.org/10.1016/j.cca.2025.120691
Manoochehri S, et al. Evaluating SMOTE-based machine learning algorithms for clinical imbalanced
datasets. Comput Biol Med. 2025;176:108265.

Helleberg J, Sundelin A, Martensson J, Rooyackers O, Thobaben R. Beyond labels: determining the true
type of blood gas samples in ICU patients through supervised machine learning. BMC Medical Informatics
and Decision Making. 2025 Jul 24;25(1):275.

Wibowo A, Masruriyah AF, Rahmawati S. Refining Diabetes Diagnosis Models: The Impact of SMOTE on
SVM, Logistic Regression, and Naive Bayes. Journal of Electronics, Electromedical Engineering, and
Medical Informatics. 2025 Jan 11;7(1):197-207. https://doi.org/10.35882/jeeemi.v7il.596

Khyathi G, Indumathi KP, Jumana Hasin A, Lisa Flavin Jency M, Krishnaprakash G, LISA FJ. Support
Vector Machines: A Literature Review on Their Application in Analyzing Mass Data for Public Health.
Cureus. 2025 Jan 8;17(1). https://doi.org/10.7759/cureus.77169

Zhou X, Li X, Zhang Z, Han Q, Deng H, Jiang Y, Tang C, Yang L. Support vector machine deep mining of
electronic medical records to predict the prognosis of severe acute myocardial infarction. Frontiers in
Physiology. 2022 Sep 29;13:991990. https://doi.org/10.3389/fphys.2022.991990

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 613



Ramadoss, S. et al: Exploring ABG imbalances ......... Archives for Technical Sciences 2025, 33(2), 600-614

[33]

[34]

[35]

[36]

Hu J, Lv S, Zhou T, Chen H, Xiao L, Huang X, Wang L, Wu P. Identification of pulmonary hypertension
animal models using a new evolutionary machine learning framework based on blood routine indicators.
Journal of Bionic Engineering, 2023;20(2), pp.762-781.

Raoufy MR, Eftekhari P, Gharibzadeh S, Masjedi MR. Predicting arterial blood gas values from venous
samples in patients with acute exacerbation chronic obstructive pulmonary disease using artificial neural
network. Journal of medical systems. 2011 Aug;35(4):483-8.

Li Y, Yang Y, Song P, Duan L, Ren R. An improved SMOTE algorithm for enhanced imbalanced data
classification by expanding sample generation space. Scientific Reports. 2025 Jul 2;15(1):23521.

Qaiser A, Manzoor S, Hashmi AH, Javed H, Zafar A, Ashraf J. Support Vector Machine Outperforms Other
Machine Learning Models in Early Diagnosis of Dengue Using Routine Clinical Data. Advances in virology.
2024;2024(1):5588127. https://doi.org/10.1155/2024/5588127

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 614



