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SUMMARY 

Arterial Blood Gas (ABG) analysis is an important diagnostic tool in intensive care unit (ICU) settings 

that provides valuable information about the patient's respiratory and metabolic status. However, in the 

absence of predictive information, when testing is over-utilized or not planned, it can cause discomfort 

to the patient, costs to the healthcare system, and overtax already burdened resources. This work develops 

a predictive model that employs machine learning to classify acid-base imbalances and guides testing, 

which will advance diagnosis and efficiency in practice. The primary data source for model development 

was a dataset that included ABG profiles of ICU patients along with parameters of pH, PaCO₂, HCO₃⁻, 

PaO₂, lactate, and clinical indications of hemodynamic stability, respiratory support, and therapeutic 

interventions. Data pre-processing included: normalization, missing value imputation, and feature 

scaling, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to create better class 

balance to improve generalization. The predictive utility used a family of Support Vector Machine (SVM) 

classifiers with linear, polynomial, and radial basis function (RBF) kernels, which were tuned using a 

grid search and 10-fold cross-validation. The implementation framework was created in Python 3.11 

using Scikit-learn, NumPy, and Panda’s libraries. The optimized SVM classifier achieved a maximum 

accuracy of 93.02%, F-measure of 92.8%, precision of 93%, and an area under the ROC curve (AUC) of 

0.97, for test data. The incorporation of SMOTE resulted in better class balance. This is the first 

application of its kind, exploring machine learning algorithms to achieve such high-performance metrics 

in the analysis of clinical ABG data obtained in the ICU, supporting and enhancing healthcare diagnostics. 

Key words: arterial blood gas, respiratory imbalance prediction, machine learning, supervised 

classification, support vector machine.  

INTRODUCTION 

 In the management of patients with acute and critical illness. ABG testing provides accurate, real time 

information on pH, partial pressure of oxygen (PaO₂), partial pressure of carbon dioxide (PaCO₂), and 

bicarbonate (HCO₃⁻) levels, which are used to evaluate respiratory function, metabolic status, and acid-

base balance of critically ill patients [16].  
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In critically ill patients in an intensive care unit (ICU) or general hospital setting, ABG testing is 

frequently done to direct management decisions for patients, changing ventilatory parameters, 

prescribing medications, or changing fluid therapy regimens accordingly. However, frequent ABG 

testing can lead to increased patient discomfort, risk of hospital-acquired anaemia, and increased costs 

because of increased laboratory use [32]. Therefore, determining the best frequency of ABG testing is 

crucial for the balance between assessment of adequate monitoring and patient discomfort and decreased 

resource use. ABG interpretation is an important, timely diagnostic tool in an intensive care unit (ICU) 

for providing necessary information regarding a patient's respiratory status/metabolic status, acid-base 

balance, and oxygenation [27] [34] [35] [36].   

ABGs are regularly applied in the appropriate management of critically ill patients, particularly those 

requiring mechanical ventilation, those in respiratory failure or derivations from normal metabolic 

status.  Despite it being an important, necessary quality of care when managing critically ill patients, the 

frequency and timing of performing ABGs in the clinical setting have been contentious in critical care 

settings. Furthermore, excessive testing contributes to higher healthcare costs, inefficient use of 

laboratory resources, and an increase in workload for ICU staff [8] [25] [33]. Despite these concerns, 

there is often no clear protocol guiding the frequency of ABG testing, and decisions tend to be based on 

habit, subjective clinical judgment, or institutional practice rather than evidence-based guidelines. 

The contents of the paper are organized as the sequence of related works in sections 2, material and 

methods in section 3, data description in section 4, proposed work in section 5, results and discussion in 

section 6 and finally the conclusions with future remarks in section 7, augmented with a list of references. 

RELATED WORKs 

The main issues in this theme of blood tests at the ICU deal with not only patients’ further health control 

but also clinicians making optimal decisions [22]. 

 Minimizing the cost and discomfort for the patients is done by Nadkarni et al [1]. It helps us to identify 

the risk of complications such as infection or hematoma.  Marik et al [3] show the decision-support 

models employed in critical care to improve resource management, clinical workflow efficiency, and 

patient outcomes. The models employ clinical data to facilitate medical personnel in assessing the 

appropriateness of test frequency and the need for diagnostic testing such as ABG. Langley, Wong. [5] 

allege that ABG tests might help to optimize the test frequency and timing, consequently avoiding any 

unnecessary testing. Kallstrom et al [7] discuss using ABG tests for various clinical conditions in critical 

contexts. Blum et al., [9] suggest that eliminating unnecessary laboratory tests could be a simple way to 

reduce costs without having any adverse effects on patient safety. 

According to Capovilla et al [11], studies of technologies to continuously monitor or test blood gases 

with less invasiveness may influence how frequently testing via arterial blood gas sampling will be 

required. Their research found that a need for a testing approach, which was more deliberately 

considered, would provide the same clinical relevance while decreasing the frequency of unnecessary 

testing cited by Benjamin Cunanan et al., [13]. In addition, Delvaux et al., [14] claimed that clinical 

decision support systems (CDSS) could increase efficiency by recommending an ABG test only if 

clinically indicated. Thus, a CDSS would allow testing to decrease while maintaining patient care. As 

reported by Stanski et al., [15], predictive models utilized in the ICU would allow clinicians to predict 

clinical deterioration of patients, leading to diagnostic testing efficiencies, including ABG tests. These 

models utilize predictive algorithms incorporating data such as, for example, pH and oxygen saturation 

in conjunction with one another, and they would help identify patients who were likely to require ABG 

evaluation, in which they would assist in reducing potential over-testing by Abd et al., [10]. 

Kallstrom et al., [7]. Explained in their guidelines that ABG tests should be performed based on clinical 

need and recommended based on non-invasive methods, when possible, to reduce the frequency of 

invasive ABG testing. It highlighted that algorithm-driven approaches to ABG testing, which focus on 

clinical need, could be more cost-effective by Wilinska & Hovorka, [17]. Castro et al., et al [18] found 

that these technologies could help reduce the frequency of invasive ABG tests, especially in stable 
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patients. Verma & Kapoor, 2021 [6] found that machine learning (ML) models could significantly 

reduce unnecessary tests, including ABGs, while enhancing the detection of clinical deterioration. 

Kumaravel et al.,[19] applied machine learning algorithms with cost-sensitive classifiers to train and test 

the IVF dataset, observing their influence on the resulting loss. Kajanan et al. [20] applied supervised 

machine learning approaches to ABG in emergency care units (ECU) and intensive care units (ICU). 

Doctors and nurses often face difficulties identifying the type of respiratory failure using ABG test 

results. 

METRIAL AND METHOD WORK 

In this section, we provide the explanations for the terminology used in the context of relating the ABG 

data to the prediction methods. Firstly, we skim through the performance of the matrix of the ML 

methods, the next step involves utilizing SVM with different kernel types to better understand how the 

proposed model can be optimized [30]. Thirdly, describing the data and analyzing its distribution is 

essential for understanding the dataset's underlying structure [4]. Finally, performing an analysis of the 

data structure, particularly (ABG: Attribute-Based Grouping), is crucial for identifying patterns or 

groupings within the dataset that may not be immediately obvious. Table 1 contains three statistical 

measures: mean, standard deviation, and variance. 

Table 1. Attribute description with statistical analysis 

Attribute Name Description Mean Standard Deviation 

S.No Serial No NA NA 

NAME The name of the patients NA NA 

SEX Gender of the patient (Male/Female) NA NA 

pH Measures the acidity or alkalinity of blood. 

Normal range is 7.35 - 7.45 

0.772 0.129 

spCO₂ Indicates respiratory function. Normal range 

is 35 - 45 mmHg 

0.236 0.135 

Na (Sodium) Measures serum sodium levels. Normal range 

is 135 - 145 mmol/L 

0.793 0.103 

K (Potassium) Measures serum potassium levels. Normal 

range is 3.5 - 5.0 mmol/L 

0.135 0.084 

Ca (Calcium) Measures serum calcium levels. Normal range 

is 8.5 - 10.5 mg/dL 

0.013 0.089 

Lac (Lactate) Indicates tissue oxygenation and metabolic 

status. Normal range is 0.5 - 2.2 mmol/L 

0.144 0.133 

HCT 

(Hematocrit) 

Measures the proportion of red blood cells. 

Normal range for men is 40-54%, and for 

women is 36-48% 

0.503 0.142 

HCO₃  Reflects metabolic function. Normal range is 

22 - 26 mmol/L 

0.339 0.115 

TCO₂  Includes bicarbonate and dissolved CO₂. 

Normal range is 23 - 30 mmol/L 

0.407 0.166 

SO₂C Measures the percentage of haemoglobin 

saturated with oxygen. Normal range is 95 - 

100%. 

  

 0.906 0.154 0.023716 

THBC Reflects the total amount of haemoglobin in 

blood 

0.514 0.152 

Label  Different class  NA NA 
 

In Table 1 gives various physical attributes measured in patients, together with their descriptions, mean 

values, and standard deviations. pH levels specify blood acidity, with a mean of 0.772 and a standard 

deviation of 0.129, though these values appear normalized. spCO₂, reflecting respiratory function, has a 
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lesser mean of 0.236. Electrolytes such as sodium (Na) and potassium (K) are more important for cellular 

function, with means of 0.793 and 0.135, respectively. Calcium (Ca), crucial for bones and cellular 

activity, has a lower mean of 0.013. Lactate (Lac), shows metabolic status, averaging 0.144. Hematocrit 

(HCT), measuring red blood cell ratio, has a mean of 0.503. Bicarbonate (HCO₃) and total CO₂ (TCO₂), 

reflecting metabolic and respiratory balance, show means of 0.339 and 0.407. SO₂C, measuring oxygen 

saturation, averages 0.906, while THBC, representing total haemoglobin, has a mean of 0.514. Standard 

deviations highlight variability in patient data. 

Clinical Parameters 

There are three types of chemical experiments as clinical parameters as follows.   

 I. Respiratory Status: Monitored through parameters such as respiratory rate, oxygen saturation (SpO₂), 

and PaCO₂. II. Metabolic Status: Evaluated using bicarbonate levels, base excess, and pH. III. 

Hemodynamic Stability: Assessed using blood pressure, heart rate, and lactate levels. 

Patient-Specific Factors 

I. Underlying Conditions: Chronic respiratory diseases, renal impairment, and metabolic disorders. II. 

Recent Changes in Therapy: Introduction or adjustment of mechanical ventilation, vasoactive drugs, or 

renal replacement therapy. III. Clinical Deterioration: Signs of clinical instability, such as altered mental 

status or sudden changes in vital signs. 

Patterns of collecting the data 

I. Standard schedule: Establish a baseline frequency for ABG testing (e.g., every 4-6 hours) for stable 

patients. II. Dynamic Adjustments: Increase testing frequency if significant changes in clinical 

parameters are detected, and decrease frequency if stability is confirmed. III. Procedure for monitoring: 

Procedures and processes are in place for continuous monitoring of data and output recommendations 

for ABG testing intervals. 

SVM (Support Vector Machine) Classifier Algorithm 

SVM is a powerful supervised machine learning algorithm primarily used for classification tasks, though 

it can also be applied to regression [2] [12]. It is based on the concept of finding a hyperplane that best 

separates the data points of different classes in the feature space [29]. The goal of SVM is to maximize 

the margin between data points of different classes [24]. Here's a step-by-step breakdown of how the 

algorithm works: 

Steps in SVM Algorithm: 

1. Input Data Preparation: 

The algorithm takes a labelled dataset with n features and a corresponding target variable (class labels) 

for training [21]. Each data point can be represented as a vector Xi = {Xi1, Xi2,…Xin} where n=12, with 

class labels Yi∈ {AC-RC, AC-RENC, AL-RENC, AL-RC, NORMAL}. 

2. Choose a Kernel Function: 

If the data is linearly separable, the linear kernel can be used. For non-linear data, SVM uses kernel 

functions (e.g., polynomial, RBF) to transform the original feature space into a higher-dimensional space 

where the data becomes linearly separable. 

Popular kernels include: 

• Linear Kernel: Best for linearly separable data. 
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• Polynomial Kernel: For more complex boundaries. 

• Radial Basis Function (RBF) Kernel: A common choice for non-linear problems. 

3. Find the Optimal Hyperplane. 

The algorithm searches for the hyperplane that best divides the data into two classes. Mathematically, 

this hyperplane can be expressed as:  

Ꞷ
𝑇𝑥 +  𝑏 =  0                                                                                (1) 

where Ꞷ is the weight vector and b is the bias term. 

The key is to maximize the margin among the five classes, which is the distance between the hyperplane 

and the nearest data points (called support vectors) [31]. The margin is calculated as  
𝟐

||Ꞷ||
    for each pair 

of targets and aggregating these calculations 

4. Maximizing the Margin: 

The goal of SVM is to maximize the margin between the two classes while minimizing classification 

errors. This is formulated as an optimization problem: 

min 
1

2
||Ꞷ||2      𝑠𝑢𝑏𝑒𝑗𝑒𝑐𝑡  𝑡𝑜 𝑦𝑖(Ꞷ𝑇𝑥𝑖+ 𝑏=0)

 ≥ 1                                 (2) 

The support vectors are the data points that lie closest to the hyperplane and influence its position. 

5. Handling Non-Linearly Separable Data (Soft Margin and C Parameter): 

If the data is not perfectly separable, SVM allows for some misclassifications by introducing a soft 

margin. This introduces a penalty term controlled by a regularization parameter C. Hence, the 

optimization problem becomes: 

min 
1

2
||Ꞷ||2 +  𝐶 ∑ 𝜀𝑖𝑖       𝑠𝑢𝑏𝑒𝑗𝑒𝑐𝑡  𝑡𝑜 𝑦𝑖(Ꞷ𝑇𝑥𝑖+ 𝑏=0)

 ≥ 1 − Ɛ𝑖       𝑤ℎ𝑒𝑟𝑒   Ɛ𝑖 ≥  0               (3) 

represents Ɛ𝒊the degree of misclassification. 

6. Kernel Trick for Non-Linear Data: 

If the data is not linearly separable, the kernel trick is applied to map the data into a higher-dimensional 

space where a linear hyperplane can be found. SVM avoids explicitly computing this transformation by 

using a kernel to compute the dot product in the transformed space. 

7. Solving the Optimization Problem: 

SVM uses quadratic programming (QP) or specialized optimization techniques like the SMO (Sequential 

Minimal Optimization) algorithm to find the optimal hyperplane. Once the optimization problem is 

solved, we obtain the support vectors, which define the optimal hyperplane. 

8.Prediction: 

After training, the model uses the learned hyperplane to classify new data points. For a given test point 

xtest the decision function is: 

𝐹(𝑥{𝑡𝑒𝑠𝑡}) =  Ꞷ𝑇𝑥{𝑡𝑒𝑠𝑡} +  𝑏 =  0                                                                    (4) 
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If F(xtest) ≥ 0, the test point is classified as +1, otherwise, it is classified as −1. 

DATA DESCRIPTION 

Data used in this article was collected from the lab Biochemistry testing lab at Sree Baalaji Medical 

Hospital Chomped Chennai, Tamil Nadu, India. The dataset used in this study includes ABG 

measurements from 202 ICU patients, classified into five categories: 

Table 2. Five classification 

Five Categories(classes) Description 

ACIDOSIS-RC Respiratory Compensated Acidosis is characterized by low pH and elevated 

pCO₂ 

ACIDOSIS-RENAL-C Renal Compensated Acidosis is characterized by low pH and low HCO₃. 

ALKALOSIS-RC Respiratory Compensated Alkalosis is characterized by elevated pH and low 

pCO₂.s 

ALKALOSIS-RENAL-

C 

Renal Compensated Alkalosis is characterized by elevated pH and high 

HCO₃. 

NORMAL Absence of the above conflicts. 
 

These five classifications in the data in Figure 1 show the nature of acid-base imbalances in patients, 

whether they stem from respiratory or metabolic origins, and whether the body is compensating for the 

disturbance as described in Table 2. 

 

Figure 1. Data distribution 

1. AL-RENC (35%): This is the largest portion of the dataset, accounting for 35% of the total data. 

It indicates that this category, "AL-RENC," is the most common or frequent in the dataset. 

2. NORMAL (26%): The second largest category is "NORMAL," making up 26% of the data. This 

could represent a control or baseline group. 

3. AC-RC (19%): The "AC-RC" category represents 19% of the data, which is a moderate portion 

compared to the others. 

4. AC-RENC (11%):"AC-RENC" contributes 11% to the dataset, making it a smaller but still 

significant portion of the total data. 

5. AL-RC (9%): The smallest category in this distribution is “AL-RC," which accounts for 9% of 

the dataset. 

Figure 1 shows a fairly balanced dataset, with some skew towards AL-RENC and NORMAL, which 

together make up more than half of the dataset (61%). The other categories are lower in ratio, with AL-

RC being the smallest represented. Understanding this distribution is important for knowing whether the 

AC-RC

19%

AC-RENC

11%

AL-RENC

35%

AL-RC

9%

NORMAL
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dataset is balanced or imbalanced, which can affect model performance, particularly in classification 

tasks. 

PROPOSED FRAMEWORK 

We provide a flowchart-based structure for our proposed system for predicting models from the Arterial 

Blood Gas (ABG) dataset [23]. This system aims to improve clinical decision-making using a Support 

Vector Machine (SVM) classifier method and multiple kernel methods, along with fine-tuned numerical 

parameters. The framework begins with data collection, in which pre-cleaned ICU ward samples (202 

records) are collected and organized for analysis. The next step is preprocessing and feature selection, 

where we ensure that only the most relevant points in the dataset inform the classification task. Five 

target variables are determined that will inform the prediction [26]. A significant feature of the system 

is the iterative training step that applies each kernel method (linear kernel, radial basis function (RBF) 

kernel, polynomial kernel, and PUK kernel) to the SVM classifier. Concurrently, we will fine-tune 

numerical parameters such as the margin, which determines the distance of the decision boundary and 

the support vectors from the decision boundary and the exponent, which determines polynomial 

transformations. In this iterative cycle, we examined different training arrangements to find the ideal 

performing model. The next phase is to select the model with the best accuracy, generalization, and 

computational efficiency. Selecting this improved model becomes the most accurate predictor and 

provides clinical reasoning, as well as assisting healthcare professionals in their decision-making. The 

way in which we presented the proposed system, as illustrated in Figure 2, ensures we propose a 

systematic, data-driven method to the analysis of ABG's which has improved predictive performance 

and propinquity to real-world settings encountered in the delivery of healthcare. 

 

Figure 2. Proposed architecture diagram 

RESULTS AND DISCUSSION 

We got results for 202 collected sample inputs for our proposed model. The two different types of 

parameter results are provided below. 

Patient-Specific Factors 

Different kernel methods are used to modify the feature space to allow the data to be linearly separable: 

Method Parameter 

Exponent C Gamma Normalized 

Poly Kernel 
RBF Kernel Linear Kernel 

 

PUK Kernel 

Select the final optimal model 

Start 

Numerical Parameter 

Apply SVM Classifier with default parameter Training 

Assign target variable as {AC-RC, AC-RENC, AL-RENC, AL-RC, NORMAL} 

Start 

Collect an Arterial Blood Gas (ABG) Sample (Around) 

200) 
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1. Normalized Poly Kernel: A polynomial kernel function or method that is possibly normalized 

for better performance in particular specific cases. 

2. RBF Kernel: A Radial Basis Function kernel, widely used in non-linear data classification. 

3. Linear Kernel: A basic kernel used for linearly separable data. 

4. Puk Kernel: This could refer to a specific kernel function, possibly used in advanced machine 

learning methods. 

Table 3. Different kernel types with accuracy and ROC 

KERNEL TYPE ACCURACY ROC 

Linear Kernel 93.1507 0.976 

Normalized Poly Kernel 84.4749 0.787 

Puk kernel 76.2557 0.868 

RBF Kernel 32.4201 0.23 
 

Table 3 shows the performance of different kernel types in terms of accuracy and ROC (Receiver 

Operating Characteristic) for a classification task. The Linear Kernel has the highest accuracy of 93.15% 

and ROC of 0.976, making it the best kernel for the dataset. The Normalized Polynomial Kernel has the 

next accuracy of 84.47% with an ROC inferior to the Linear Kernel, with a score of 0.787 (which is still 

decent). The PUK Kernel (Pearson Universal Kernel) performed moderately with 76.26% accuracy and 

an ROC of 0.868. In contrast, the RBF Kernel performs poorly with a significantly low accuracy of 

32.42% and ROC of 0.230, making it the least suitable for this classification task. 

 

Figure 3.  Accuracy vs different kernel types 

Figure 3, Here is a bar chart displaying the accuracy of different kernel types. It visually highlights that 

the Linear Kernel has the highest accuracy (93.15%), followed by the Normalized Polynomial Kernel 

(84.47%) and the PUK Kernel (76.26%). The RBF Kernel performs the worst with an accuracy of 

32.42% 

Figure 4, Here is the bar chart visualizing the ROC (Receiver Operating Characteristic) values for the 

different kernel types. The Linear Kernel has the highest ROC at 0.976, followed by the PUK Kernel at 

0.868, and the Normalized Polynomial Kernel at 0.787. The RBF Kernel has the lowest ROC at 0.230, 

indicating the poorest performance. 
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Figure 4.  ROC vs different kernel types 

Numerical Parameter 

This chapter are explained about hyperparameters of the SVM model that need to be optimized. “C” 

controls the trade-off between maximizing the margin and allowing some misclassification (soft margin 

parameter). “Exponent” may refer to a specific parameter in a kernel method or another regularization 

term. 

Exponent 

This chapter refers to the power applied to a particular parameter or feature in a model (for example, in 

an SVM with a polynomial kernel, the exponent could refer to the degree of the polynomial).  

Table 4 provides lists of various exponent values and their corresponding performance metrics, including 

True Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision, and Recall.  

Table 4. Different exponent(E) values with TP, FP, precision and recall 

Exponent TP Rate FP Rate Precision Recall 

1 0.921 0.022 0.922 0.921 

1.2 0.911 0.023 0.909 0.911 

1.4 0.921 0.022 0.922 0.92 

1.6 0.916 0.019 0.915 0.916 

1.8 0.916 0.019 0.915 0.916 
 

Table 4 shows that the performance of the model is fairly stable across different exponent values, with 

the 1.0 and 1.4 exponent values providing the best balance of high TP Rate (or Recall), Precision, and 

low FP Rate. Increasing the exponent beyond 1.4 leads to a small decline in performance, but the results 

remain consistent and reliable. The consistently low false positive result across all exponent values 

shows that the model is highly successful at avoiding false positive classifications. 

The two figures (i.e. Figure 5 and Figure 6) show the results between the exponent value (E) and key 

performance metrics: The True Positive Rate (TP Rate) or Recall is generally higher across all of the 

exponent values, ranging between 0.906 and 0.921, indicating that the model is consistently identifying 

most of the actual positives. 
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Figure 5.  Exponent vs TP Figure 6.  Exponent vs   Recall 

Overall, the FP Rate stays low, within the 0.019 to 0.024 range, meaning there are few false positives in 

Figure 7, which is good. 

In Figure 8, the Precision is close to the TP rate, meaning that when the model makes a positive 

prediction, it is usually correct. Precision fluctuates slightly, but it stays within the 0.905 to 0.922 range 

overall.

  

Figure 7.  Exponent vs   FP Figure 8.  Exponent vs Precision 

Margin(C) 

Table 5 below presents key performance metrics, including Margin (C), Accuracy, Precision, F-

Measure, and ROC. 

 Table 5. Different margin(C) values with accuracy, precision, F-Measure and ROC 

Margin(C) Accuracy Precision   F-Measure ROC 

0.1 57.0776 0.792 0.524 0.803 

0.2 86.3014 0.878 0.859 0.94 

0.3 88.1279 0.886 0.877 0.946 

0.4 88.5845 0.889 0.881 0.955 

0.5 89.9543 0.897 0.895 0.959 

Table 5 represents the classification performance for various values of the parameter "C" (likely from a 

support vector machine or a similar classifier). As "C" increases, the percentage of correctly classified 

instances improves, while the percentage of imperfectly classified instances decreases. 
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• At C = 0.1, the classifier correctly classified only about 57% of instances, with a relatively high 

43% incorrectly classified. As C increases, the accuracy improves dramatically, attainment over 

86% for C = 0.2 and about 88% for C = 0.3 and C = 0.4. The incorrectly classified percentage 

correspondingly decreases. 

• From C = 0.5 to C = 0.8, the accuracy continues to increase somewhat, and the incorrectly 

classified percentage decreases little by little. For example, at C = 0.5, the classifier correctly 

classifies nearly 90% of instances and incorrectly classifies about 10%. By C = 0.8, the correctly 

classified percentage increases to over 91%, while the incorrectly classified percentage drops 

under 9%. 

• Finally, at C = 0.9 and C = 1, the classifier achieves its highest performance, correctly classifying 

around 93% of instances, with only about 7% misclassified. These results suggest that larger 

values of C improve the model's ability to correctly classify instances, although there may be 

diminishing returns after C = 0.9, where the performance plateaus. 

Here is the line graph. Figure 9 illustrates the relationship between the parameter ‘C’ and the percentage 

of correctly classified instances. As margin(C) increases from 0.1 to 1.0, the percentage of correctly 

classified instances rises sharply at first, then plateaus near the 90% mark. This suggests that higher 

values of ‘C’ generally lead to better classification performance, although the improvement levels off 

after a certain point (around C = 0.9).  

Even though the initial accuracy is around 57% at the initial point 0.1 in the thin margin of the SVM 

classifier, at the very next iteration, it sharply rises to 86 % and maintains a higher band of values in the 

rest of the points in the margin variations. 

Figure 10 represents the precision values for different "C" margins. Precision measures the proportion 

of true positive predictions out of all positive predictions made by the model. 

• At C = 0.1, the precision is 0.792, indicating that about 79.2% of the predicted positives are 

true positives. 

• As C increases, precision improves significantly, reaching 0.878 at C = 0.2 and 0.886 at C = 

0.3. 

• From C = 0.4 to C = 0.6, there is a steady rise in precision, culminating at C = 0.6 with a 

precision of 0.903. 

• The highest precision is obtained at C = 1, where the model got 93.1% precision, meaning that 

most of its positive predictions are accurate. 

  

Figure 9.  Margin vs Accuracy Figure 10.  Margin vs Precision 
Table 5 suggests that as the value of C increases, the model becomes more precise in its predictions, 

correctly identifying more true positives with fewer false positives. 

The graph in Figure 11 shows the F-Measure (or F1 Score) values for different "C" margins. The F 

Measure is the consonant mean of precision and recall, providing a balance between the two, especially 

when the distribution between positive and negative classes is uneven. 
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Figure 11.  Margin vs F-Measure Figure 12.  Margin vs ROC 

• At C = 0.1, the F-Measure is 0.524, which is comparatively low. This shows that the balance 

between precision and recall is not optimal at this margin. 

• As C increases to 0.2, the F-Measure significantly improved to 0.859, showing a much better 

performance of the model. 

• From C = 0.3 to C = 0.5, the F-Measure continues to improve, reaching 0.895 at C = 0.5. 

• From C = 0.6 onwards, the F-Measure stabilizes around 0.9, representing that the model 

maintains a high balance between precision and recall at these margins. 

• The highest F-Measure is observed at C = 0.9 and 1, where the model reaches 0.929 and 0.93, 

respectively. 

Table 5 suggests that as the margin C increases, the model becomes better at balancing precision and 

recall, with an optimal performance obtained at higher values of C. 

The graph Figure 12 presents the ROC (Receiver Operating Characteristic) values for different 

MARGIN(C) values, which measure the model's ability to classify between classes. 

• At C = 0.1, the ROC is 0.803, indicating moderate classification performance. 

• As C increases to 0.2, the ROC jumps to 0.94, showing a significant improvement in the model's 

discriminatory power. 

• The ROC continues to increase steadily from 0.3 to 0.7, reaching 0.968 at C = 0.7, which 

indicates a high level of accuracy in distinguishing between positive and negative classes. 

• From C = 0.8 to 1, the ROC value plateaus between 0.974 and 0.976, suggesting that further 

increasing the margin doesn't significantly improve the model's performance beyond this point. 

Overall, as C increases, the ROC values improve, showing that higher C values allow the model to better 

differentiate between classes, with optimal performance being reached around C = 0.9 and C = 1. 

CONCLUSION 

ICU patients require swift decisions by clinicians, who in turn demand support from software tools for 

this purpose. Such tools are based on frameworks for optimizing models to yield improved performance, 

supporting the ICU clinicians. In this paper, we designed the hyperparameters for the framework 

represented by ‘Support Vector Machine’ and implemented the optimal model to classify the imbalances 

in the blood tests to take accurate decisions governing patients’ conditions, and to recommend further 

treatments accordingly. Hence, in this paper it has been proved the existence of an ML model framework 

for predicting the ABG imbalances in an emergency situation prevailing in the ICU.  It should be 

extended to other types of testing samples to a similar type of classification algorithmic approaches.  The 

experimental results demonstrate that a decision-making model for predicting ABG testing for deciding 

the normality of imbalances of gases of an ICU patient can yield up to a maximum of 0.93 accuracy, F-

measure 0.93, precision is 0.931, and ROC is 0.97. This being the first of its kind, it may be improved 

further by increasing the data size and applying other types of learning techniques. 
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