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SUMMARY

Diabetes Mellitus is a significant world health and early detection is of paramount significance since it
decreases the complications and enables medical intervention in time. The paper is a comparison between
the predictive accuracy of the eight Machine Learning classifiers: Logistic Regression, Support Vector
Machine (SVM), Decision Tree, Random Forest, Gradient Boosting, Naive Bayes, k-Nearest Neighbors
(k-NN), and an Ensemble model on the Pima Indian Diabetes dataset and a collection of clinical-
biological patient records. Performance evaluation was conducted using Precision, Recall, F1-Score, and
the Area Under the ROC Curve (AUC-ROC). The findings show that a significant difference was
observed among the models, with SVM (AUC-ROC: 0.8648) and the Logistic Regression (AUC-ROC:
0.8638) having the best discriminative ability. A comparable study found that Logistic Regression had
the highest Precision (0.7632), indicating fewer false-positive predictions, whereas Decision Tree had the
highest Recall (0.7447), indicating greater sensitivity in detecting diabetes cases. The ensemble learning
produced the best overall performance (AUC-ROC: 0.8709), suggesting that combining predictions from
multiple models increases reliability and generalization. On the other hand, k-NN performed worst due
to sensitivity to noise and the number of features. In general, the results provide evidence of the high
potential of linear-margin and ensemble-based models to structured clinical data and would be a robust
foundation of clinical decision support systems, which further help to broaden the role of ML-based
analytics in early diabetes diagnosis and preventive health care planning.

Key words: diabetes prediction, machine learning,; pima indian dataset, clinical-biological data,
ensemble learning, logistic regression, support vector machine (SVM), AUC-ROC, clinical decision
support system.
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INTRODUCTION

Diabetes Mellitus (DM) ranks among the top widespread chronic metabolic disorders of our time and
presents a danger to global health [1]. The International Diabetes Federation (IDF) states that the
estimated number of people living with diabetes is expected to rise from 537 million in 2021 to 783
million by 2045, demonstrating rapid case increase in developed and developing areas. It is crucial to
recognize diabetes in its early stage, as diagnosis after the onset of complications such as cardiovascular
disease, nephropathy, neuropathy, and retinopathy, which are associated with an increased mortality rate
and healthcare costs [18].

The traditional approach to diagnosis and risk prediction relies on identifying clinical parameters and
laboratory metrics. These conventional approaches often do not exhibit predictive efficiency, and they
are challenging to scale to large or diverse groups of patients, and lack interpretability and generalize
ability [22] however, with the rapid availability of structured medical records, clinical-biological
datasets, and demographic data, there are new avenues to explore computational methods with better
accuracy and effectiveness to predict diabetes [2][19].

Machine Learning (ML) and Deep Learning (DL) approaches have demonstrated significant potential
for predicting diabetes risk by identifying hidden patterns and nonlinear associations that classical
predictive statistical models cannot capture [3][17]. Recent investigations indicate that ML and DL
algorithms, such as Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR),
and Gradient Boosting, are superior to conventional regression-based predictive frameworks, especially
for complex, high-dimensional medical datasets [4][20]. Furthermore, ensemble learning approaches
that combine multiple heterogeneous models have also emerged as a promising method to improve
classification performance and reduce prediction bias [23]. Given ensemble theories, several
investigations show high accuracy and AUC-ROC values compared to the single model. The evidence
further underscores that ML-based diabetes prediction models provide a robust basis for on-site
screening and risk stratification in real-world clinical contexts [5] [10].

Despite this progress, many existing studies are limited to a single dataset, most often the Pima Indian
dataset, resulting in limited generalizability and replication challenges [24]. To address this gap, the
present study evaluates eight ML models, including Logistic Regression, SVM, Decision Tree, Random
Forest, Gradient Boosting, Naive Bayes, k-Nearest Neighbors (k-NN), and an Ensemble model, using
both the widely used Pima Indian dataset and additional clinical-biological data [6][21]. The goal is to
identify the model with the best predictive performance and demonstrate how integrating clinical data
with ensemble methodologies can improve diabetes prediction accuracy [24] [16].

Key Contributions of the Research

The main contribution of this research is the exhaustive comparison of multiple machine learning
approaches across the Pima Indian dataset and real-life clinical-biological datasets, rather than a single
benchmarking dataset as many prior studies have done [6]. Utilizing eight different models, Logistic
Regression, Decision Tree, Random Forest, Gradient Boosting, SVM, Naive Bayes, k-Nearest
Neighbors, and an Ensemble approach, provides a multi-dimensional evaluation of predictive
performance using clinically meaningful metrics of Precision, Recall, F1-Score, and AUC-ROC.
Furthermore, the incorporation of an ensemble model enables the generation of an aggregated
performance based on the strengths of individual classifiers, increasing predictive reliability and
potentially reducing model bias. This study also clarifies the use of additional clinical-biological
variables and shows that heterogeneous data sources significantly improve the accuracy of diabetes
prediction. The implications of this investigation may be useful in creating appropriate and trustworthy
clinical decision-support systems that assist healthcare professionals in identifying individuals at most
significant risk of diabetes as early as possible, thereby improving patient outcomes and preventive
healthcare planning [4].

The outline of the paper, chapter-wise, is as follows. Chapter 11 is a review of the related literature, while
Chapter III provides a brief overview of the theoretical framework, key concepts, and methodologies.
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Chapter IV will evaluate the experimental results and discussion, whereas Chapter V wraps it all up with
a summary of the most important findings and suggestions for further research.

LITERATURE REVIEW

Sharma et al. [7] provide a detailed review of machine-learning (ML) approaches for diabetes detection,
describing preprocessing pipelines, feature selection methods, and families of models reported in the
literature. The authors note that classical supervised learners (SVM, RF, LR) and ensembles of decision
tree models continue to have strong performance on tabular clinical data, while many deep learning
models generally do not perform optimally with smaller, "dirty" healthcare datasets without intensive
feature engineering [8]. The review identifies common practical problems in the literature, including
class imbalance, missing values, inconsistent evaluation protocols, and a lack of external validation, and
suggests standardized benchmarking and explainability solutions to address barriers to clinical uptake
in healthcare.

Fregoso-Aparicio et al. [25] conducted a systematic review of predictive models for type-2 diabetes,
reviewing about 90 studies. They reported that tree-based methods (Random Forest, Gradient Boosting)
discriminated best, whereas neural networks were sensitive to dataset quality and to model tuning. The
authors highlight the heterogeneous nature of the studies (predictors, preprocessing, reporting evaluation
metrics) and call for transparent reporting (feature list, imputation, hyperparameter search) and
validation procedures across multiple cohorts to increase reproducibility and generalizability for clinical
use.

Tasin et al. [9] discuss combining ML with explainable Al (XAI) methods to predict diabetes in small-
to medium-sized clinical datasets. They show that using model-agnostic explanation methods (SHAP,
LIME) within the pipeline improves clinical interpretability without significantly affecting predictive
performance, and they describe practical pipelines (imputation, scaling, and class balancing) for small
clinical datasets. They highlight the importance of post-hoc explanations, along with domain-aware
feature engineering, to gain trust in clinical justifiable decision-support systems.

Firdous et al. provide an overview of diabetes risk prediction approaches used in primary care and
community-based settings, summarizing algorithms for predictors readily available in each office (age,
BMI, family history, glucose measures). The authors highlight the importance of simple, interpretable
models (logistic regression and decision trees) in the screening space due to the ease of interpretation
and low data requirements, and suggest hybrid pipelines that rely on interpretable risk scores for triage
and possible ML re-scoring for borderline values.

Afsaneh et al [11] conducted an extensive review of ML/DL applications across the diabetes types
(T1IDM, T2DM, gestational), specifically blood-glucose prediction, hypoglycemia, detection/
classification, and risk stratification. They note that time-series problems (continuous glucose
monitoring) benefit from deep sequence models, while risk prediction from tabular data should focus on
ensembles and careful feature selection. They also note a paucity of data volume and external validation,
while highlighting the need for positive associations of large multicenter studies and benchmark
reporting.

Shin et al [12] review the translational impact of diabetes ML derived models and present suggestions
for effectiveness in low-resource settings: (i) careful selection of study cohorts and temporal splits to
avoid information leakage; (ii) timely reporting of calibration and decision-curve analysis along with
performance reporting (AUC); (iii) external validation (across health-care settings); and (iv) evaluation
(latency, robustness, fairness) to support deployment. These considerations aim to translate the models
from proof of concept into the clinical space to improve usability (impact), while safeguarding patient
safety and equity.

Petridis and colleagues [13] summarize currently trending methods for T2DM management using ML,
highlighting recent developments in interpretable models, feature-attribution techniques and multi-
modal data specifications (lab tests, wearable, dietary habits, etc.). The review cites a rise in studies
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using nutrition/behavioral data alongside standard clinical feature sets. It suggests that diverse features
may significantly improve early risk detection when combined with ensemble learners and robust feature
selection procedures.

Kiran et al [14] discuss a systematic, metric review of 33 years of ML/AI research focused on T2DM
prediction from 1991-2024. They examine trends in dataset usage, algorithm popularity, geographic
spread, and open-science practices, noting that gradient boosting methods have seen increasing
popularity and that there is growing recognition of fairness/interpretability issues, although gaps remain
in longitudinal external validation efforts. They make recommendations for the wider community to
collaborate on large crowd sourced publicly available annotated cohorts and to agree on benchmarking
protocols to expedite the development of clinically-relevant models (Debebe, 2016).

Qin et al [15] discuss ensemble learning applications to diabetes prediction, and suggest that, by
aggregating complementary decision boundaries, ensembles (stacking, voting, boosting) improved
performance compared to single models. They analyze criteria for ensemble decision features (base-
learner diversity, stacking meta-learner, calibration) to demonstrate how well-designed ensembles
decrease variance and bias in clinical data.

Table 1. Summary of existing studies on diabetes prediction using machine learning

S.No Author(s) Methodology / Dataset Major Findings / Identified Gaps /
) & Year Focus Area Used Contributions Limitations
Compared ML Pima Indian SVM achieved the Limited dataset size;
algorithms (SVM, . lacked feature
Rahman et Diabetes best accuracy due to . .
1 RF, LR) for . engineering and
al., 2022 ) Dataset margin-based
diabetes o hyper parameter
. . (PIDD) generalization .
classification tuning
' ' Grad}ent Boosting Over fitting
Gradient Boosting . achieved strong
Hospital L observed on
Zhang & & XGBoost for . predictive . )
2 . . EHR clinical imbalanced datasets;
Li, 2023 diabetes performance and .
. dataset requires large
prediction handled feature .
. . computation
interactions well
Ensemble learning Improqu
. classification Ensemble
Kaur et al., with Random ..
3 - PIDD accuracy by complexity increases
2021 Forest + Decision .. . .
. combining multiple computational cost
Tree stacking
weak models
Al Deep learning Public ANN captured Model
4 Mamdouh model (ANN) clinical nonlinear patterns interpretability
’ with multiple dataset + lab | better than basic ML | limited; "black-box"
2020 .
hidden layers records models nature
Feature Selection PIDD + Reduced feature .
. . . ) Feature selection is
5 Fazil et al., using Genetic custom space improved sensitive to
2024 Algorithm + SVM patient model speed and .
. . parameter settings
classification samples accuracy
Thapa & Naive Bayes with NB performed well decriggg(()ir&irlllcrelois
6 Sharma, preprocessing and PIDD with balanced data Y
> or correlated
2022 data balancing and fewer features
features
Federated . Improved security Communication
. Multi-
. Learning . and allowed cross- overhead; lower
Benitez et hospital . .
7 framework to Lo hospital learning accuracy compared
al., 2023 . distributed . . .
preserve patient without sharing raw to centralized
. dataset .
privacy data learning
Explainable Al PIDD Improved clinician Requires domain
Akter etal., | (XAI) with SHAP | hospital p . qu! \
8 .. . trust by showing expert interpretation
2024 values for clinical clinical .
feature importance of SHAP outputs
transparency records
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Previous research (Table 1) into predicting diabetes has utilized distinct classical Machine Learning
models, including Logistic Regression, SVM, Decision Tree, Random Forest, Naive Bayes, and k-NN,
which have provided good accuracy, yet have limitations such as susceptibility to noise and imbalanced
data as well as not utilizing feature engineering and not having consistent performance across different
datasets. These models, on their own, provide models with poor generalization and do not take full
advantage of the complementarity in strengths achievable with classifiers. The proposed system involves
eight separate ML models, with a hybrid Ensemble model that includes more than one classifier,
reducing instability and improving the reliability of predictions. By using standard processing,
hyperparameter tuning, and validation across clinical-biological records and the Pima Indian Diabetes
dataset, the ensemble model was demonstrably superior, achieving the highest P-AUC of 0.8709 to
solidify predictions. The comparison shows that while the models demonstrated to have the best
performance (for a specific metric) such as Logistic Regression having the best Precision and Decision
Tree having the best Recall, the ensemble model reduced both false predictions and improved describing
ability consistently better than any of the models. So, this proposed system increased accuracy, trusted
outcomes, and clinical applicability. Overall, this shows that using different ML applications is a better
approach for detecting diabetes early and supporting clinical decision-making.

METHODOLOGY
Dataset Description and Pre-processing

The study uses two datasets: (i) the Pima Indian Diabetes Dataset (PIDD), which contains the
physiological and demographic health factors of Pima Indian Women, and (ii) a Clinical-Biological
dataset that consists of laboratory and diagnostic measurements from healthcare settings. Both datasets
have the same binary outcome (diabetic/non-diabetic). Before constructing models, extensive
preprocessing was performed to improve data quality. Missing data was imputed using the median for
all numerical features and the mode for categorical features. Outliers, especially for those glucose,
insulin, and BMI attributes, were corrected using the interquartile range (IQR) method. All numerical
features were also normalized using Min-Max Scaling. Finally, during the preprocessing for algorithms
sensitive to class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was used to
equally balance the number of positive and negative samples in the training dataset. The processed
dataset was finally split into a training and a testing dataset at a 80:20 ratio for model evaluation.

Missing Data Imputation |

v

Outlier Correction J

v

Normalization ]

v
SMOTE )

v

Training and Testing Dataset |

Figure 1. Dataset description and pre-processing workflow

Figure 1 shows the entire process of preprocessing two datasets, i.e., Pima Indian Diabetes Dataset
(PIDD) and a Clinical-Biological Dataset. The two datasets have a similar binary outcome of diabetic
and non-diabetic cases. To guarantee the quality and consistency of the data, the missing values were
imputed using median and mode methods of numeric and categorical variables, respectively. The Inter

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 764



Zeeshan Hussain, et al: Advancing diabetes ... ... Archives for Technical Sciences 2025, 33(2), 760-775

quartile Range (IQR) was used to correct outliers in such attributes as glucose, insulin, and BML.
Afterward, Min-Max normalization was used to normalize all the numerical features, and Synthetic
Minority Over-sampling Technique (SMOTE) was utilized to resolve the problem of class imbalance in
the training dataset. Lastly, the processed dataset was divided into training and test set at 80:20 ratio to
test the model.

Model Development and Evaluation Protocol

It was determined that eight strong predictive models could be used for comparative evaluation: Logistic
Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), Naive
Bayes, k-Nearest Neighbors (k-NN), and Ensemble Model. The ensemble model is based on a soft-
voting framework that combines several base learners, where each model produces a final class
prediction with odds-weighted probabilities. Hyperparameter optimization was performed to avoid
overfitting and improve generalization using 10-fold Cross-Validation with Grid Search. Standard
classification measures, Precision, Recall, F1-Score, and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), would be used to evaluate model performance. Precision refers to
the percentage of correct optimistic predictions, Recall refers to the model's capacity to identify actual
positive cases, and F1-Score balances Precision and Recall. The first-choice metric is AUC-ROC
because it is effective at determining and quantifying discriminative power across a wide range of
threshold values.

[ Eight Predictive Models ]

v

[ Ensemble Model ]
v

[ Hyperparameter Optimization ]

[Grid Search with 10-fold Cross Validation ]

v
[ Model Performance Evaluation ]
v
I v ' 1
[Precision ] [Recall ] [Fl—Sc?re ] [AUC;ROC ]
I I

Figure 2. Model development and evaluation protocol

Figure 2 shows the general image of the workflow in the development and assessment of predictive
models applied in the classification of diabetes. Eight machine learning models, which are Logistic
Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), Naive
Bayes, k-Nearest Neighbors (k-NN), and an Ensemble Model, were applied. The ensemble model uses
soft voting to fuse predictions from multiple base learners to improve classification. The optimization
of the hyperparameters was performed through the utilization of the Grid Search with 10-Fold Cross-
Validation to increase the generalization and avoid overfitting. The performance of the models was
measured using standard classification measures, Precision, Recall, and F1-Score, which give a broad
analysis of the ability to predict of the models.

Implementation Workflow

The implementation of the proposed methodology follows a logical, stepwise approach to make model
training and evaluation more efficient. It starts with loading and preprocessing the datasets to handle
missing values, outliers, and inconsistencies. The predictor variables are then identified and normalized
to have a uniform scale of all the features. To address class imbalance in the datasets, resampling
methods such as SMOTE were used, improving the fairness of representation for both classes. Each
chosen predictive model was trained on the training dataset and tested on the unseen test dataset to assess
generalization. The last step is to incorporate an ensemble model that leverages the capabilities of
individual classifiers while minimizing model-specific variability. The whole procedure was done in
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Python with the help of scikit-learn to train the model, pandas to manage data, and matplotlib to visualize
performance.

Load Datasets
v

Pre-Process Datasets
v
Normalize Predictor Variables

]
]
]
v
Deal With class Imbalance ]
]
]
]

N M Y —

v
[ Train Prediction Models

v
[ Assess Prediction Models

v

[ Ensemble Integration

Figure 3. Implementation workflow

Figure 3 shows the implementation workflow that is followed step by step in the study when developing
and assessing predictive models. The first stage involves loading and preprocessing the datasets whereby
data cleaning, transformation and normalization of predictor variables are done to prepare the model.
The imbalance of classes is resolved with the help of re sampling techniques that enhance predictive
fairness. After that, several model machine learning systems are trained on training set and tested on test
set to test the ability to generalize. Lastly, an ensemble integration process is implemented to integrate
the strengths of individual models to make the ensemble more stable and perform well.

Let:
X={x1,x2,....xn} — input feature set (glucose, BMI, age, insulin, etc.)
y€{0,1} — output class
0= Non-diabetic, 1=1 =1= Diabetic
M;— ith machine learning model (e.g., SVM, RF, LR)
Model Training Function
yhi = Mi(X) (1
Every machine learning model M I takes as input feature X and produces a predicted class label y i. This
is the way patterns of these models, as Logistic Regression, Random Forest and SVM, are learned using

the dataset and used to determine whether a new instance is diabetic or not.

Ensemble Soft Voting (Probability Averaging)

pensemble = % =YK . pi
The result of every Mi model is a probability score pi that shows the likelihood of a patient having
diabetes. The ensemble method averages all k models instead of choosing one of them. This minimizes
model bias of individuals and the stability of prediction leading to better classification.

Final Decision Rule

y*={1,if ensemble>1
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0 otherwise 3)

Once probability averaging has been performed, a threshold t T (the usual choice is 0.5) is used to decide
on the eventual classification. When the probability is at least equal to the threshold, the patient is
considered to be diabetic, and not diabetic otherwise. This is a rule that converts numerical probability
into an ultimate decision.

F1-Score (Primary Performance Metric)

__ 2XPrecisionXRecall

F1 4)

Precision+Recall

F1-Score To determine the extent of model detection of diabetes without generating excessive false
alarms. It trades Precision and Recall, and is therefore appropriate in medical predictions in which false
negatives (actual diabetic cases missed) are highly important.

Table 2. Overview of equations and their purposes in the classification framework

Equation No. Purpose
(1) Individual model prediction
2) Combines probabilities from multiple models (Ensemble)
3) Converts probability into final classification
4) Evaluates model effectiveness

The proposed formulation in Table 2 starts with the training of each machine learning model Mi, which
is used to predicted output y i, an outcome (Equation 1) based on patient clinical features X. Some
methods, like the ensemble technique, do not use only one model, but average the probability of the
model, which is a combined probability ensemble (Equation 2). This is a summed value which is
compared against a threshold t and when the probability is equal to or higher than the threshold, then
the model predicts diabetes (Equation 3). In order to measure the accuracy of the model, F1-Score is
calculated in Precision and Recall (Equation 4). These equations combined create a powerful prediction
model that reduces model error and enhances clinical reliability in the diagnosis of diabetes.
Algorithm: Ensemble-Based Diabetes Prediction Model

Input: Dataset D (features X, labels y)

Output: Final prediction y (0 = Non-diabetic, 1 = Diabetic)

1. BEGIN

2. Load dataset D (Pima Indian + Clinical-Biological data)

3. // DATA PREPROCESSING

4. Handle missing values using median (numeric) / mode (categorical)

5. Detect and remove outliers using IQR method

6. Apply Min—Max scaling to normalize features

7. Address class imbalance using SMOTE

8. Split dataset into Training set (80%,) and Test set (20%)
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10. Initialize models: M = {Logistic Regression, SVM, Decision Tree,
Random Forest, Gradient Boosting, Naive Bayes, k-NN}

11. FOR each model Mi in M DO
12. Train model Mi on Training set
13. Predict probability Pi for Test set
14. END FOR
15. /) -~ ENSEMBLE INTEGRATION --------
16. Compute probability average:

Ensemble = (1/k) * X Pi // Uses Equation (2)
17. Apply decision rule: // Uses Equation (3)

IF Ensemble > threshold (0.5)

y=1  //Predict Diabetic
ELSE
y=0  // Predict Non-Diabetic

18. /) -~ PERFORMANCE EVALUATION --------
19. Calculate Precision, Recall, and F1-Score using Equation (4)
20. Return y as final prediction
21. END
EXPERIMENTAL RESULTS
Performance Evaluation of Individual Models

All eight machine learning models, Logistic Regression, Support Vector Machine (SVM), Decision
Tree, Random Forest, Gradient Boosting, Naive Bayes, and k-Nearest Neighbors (k-NN), were trained
and evaluated on the processed dataset. Each model was evaluated using four performance metrics:
Precision, Recall, F1-Score, and AUC-ROC, with notable differences across models. Logistic
Regression had the highest Precision, demonstrating its ability to minimize false-positive classifications.
On the other hand, the most sensitive model for recognizing a diabetic case was the Decision Tree, which
estimated the highest Recall among the models. The poorer performance of k-NN relative to the others
may be attributed to its sensitivity to noise and to feature scaling. SVM and Logistic Regression had
high metrics, indicating that linear-margin algorithms work well with structured clinical data. The
performance comparison of each machine learning model (Table 3) shows some differences in predictive
performance between the classifiers. Logistic Regression had the highest Precision (0.7632), indicating
it was the strongest at identifying actual diabetic cases while minimizing false positives. The Decision
Tree model had the highest Recall (0.7447), suggesting it was good at detecting more actual diabetic
cases, and the cost was a greater level of false positives compared to Logistic Regression. Support Vector
Machine (SVM) had the highest AUC-ROC (0.8648), which demonstrates its discriminative power in
distinguishing between diabetic versus non-diabetic classes. Random Forest and Gradient Boosting also
performed equally, with an equal Precision and Recall [scores].
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Table 3. Performance evaluation of individual machine learning models on diabetes prediction

Model Precision | Recall | F1-Score | AUC-ROC
Logistic Regression 0.7632 | 0.7214 | 0.7417 0.8638
Support Vector Machine (SVM) | 0.7511 | 0.7336 | 0.7423 0.8648
Decision Tree 0.7014 10.7447 | 0.7223 0.8214
Random Forest 0.7458 | 0.7283 | 0.7369 0.8467
Gradient Boosting 0.7586 0.738 0.7482 0.8529
Naive Bayes 0.6934 | 0.7218 | 0.7068 0.8123
k-Nearest Neighbors (k-NN) 0.6649 | 0.6825 | 0.6735 0.7992

Naive Bayes and k-Nearest Neighbors (k-NN) on the other hand were poor in general performance
because noise and feature scales were sensitive to their results. This illustrates again that linear and
ensemble-style models were better established for working with structured clinical datasets.

Ensemble Model Performance

To enhance prediction stability, a Soft Voting Ensemble was formed by combining the prediction
probabilities of the top individual classifiers. Overall, the ensemble model exhibited the best
performance, with an AUC-ROC of 0.8709, which was higher than that of all the individual models.
The finding suggests that combining multiple learning strategies can substitute for the weaknesses of
the individual models while still capturing theoretically complementary decision boundaries. The
ensemble attained reasonable Precision, Recall, and F1-Score, which supported the notion that the
ensemble was able to recognize the difference between diabetic and non-diabetic observations with no
over-fitting. The respective AUC-ROC figures confirm the high discriminatory ability and reliability of
the ensemble scheme towards real world decision support in clinical practice.

0.901 = : =
0.88

0.86 |

\ el oL ) e5
N &0 « o ¢ot© & Ooe&\ o oY o
o . 30 d\e(\‘ W <

(o

Figure 4. AUC-ROC comparison across models (including ensemble)

The AUC-ROC performance of all assessed models is shown in the line graph in Figure 4, and there is
a discernible difference among them in their discriminative performance for diabetes prediction. Logistic
Regression and SVM exhibit strong performance, with similar AUC scores, indicating that margin-based
linear classifiers perform well with well-defined clinical data. Tree-based models such as Decision
Trees, Naive Bayes, and k-NN tend to achieve lower AUC values because they perform worse on noisy
data and in generalization. The Ensemble model has the highest AUC-ROC value of 0.8709, which is
greater than that of all stand-alone models and demonstrates the advantage of leveraging predictions
from diverse classifiers; the ensemble can exploit distinct decision boundaries and predictive stability in
real-world clinical decision support settings.
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Comparison Between Pima Indian Dataset and the Clinical-Biological Dataset

The two datasets were compared for model generalization. Models trained on clinical-biological data
showed higher prediction consistency, owing to greater laboratory and diagnostic biomarker
information. Conversely, although the Pima Indian dataset is widely used in research, it had lower Recall
than the other datasets, mainly due to its limited feature diversity. The ensemble approach analysts
evaluated the same or similar features across the two data sets, further supporting the idea that the
ensemble generalizes the overall marks to a heterogeneous clinical setting. These findings confirm that
greater feature richness enhanced the prediction of diabetes and increased robustness in clinical practice.

Table 4. Performance comparison between pima indian dataset and clinical-biological dataset using ensemble

model
Dataset Precision | Recall | F1-Score | AUC-ROC
Pima Indian Dataset 0.7432 0.721 0.7319 0.8534
Clinical-Biological Dataset | 0.7714 | 0.7485 | 0.7598 0.8709

The results of the comparison Table 4 show that generally the Ensemble model may be considered better
than the Clinical-Biological dataset in comparison to the Pima Indian dataset, in terms of all the
performance measures. The Precision and Recall metrics are improved, which means that the model is
more capable of identifying the actual diabetic cases more accurately with fewer false positives and false
negatives being detected using the supplementary clinical types. The improvement in discriminative
ability is also supported by the fact that the AUC-ROC increased from 0.8534 to 0.8709, reflecting the
diagnostic relevance of the diagnostic biomarkers in the Clinical-Biological dataset. All in all, such
findings indicate that the richness and diversity of the data will definitely help to enhance the model
performance in an actual world clinical scenario.

Comparison of Ensemble Model Performance on Two Datasets

= Pima Indian Dataset
| mmm Clinical-Biological Dataset

0.8

0.6}

0.2}

0.0

Precision Recall F1-Score AUC-ROC

Figure 5. Comparison of ensemble model performance between pima indian dataset and clinical-biological dataset

A performance comparison of the Ensemble classification model results using the Pima Indian dataset,
and the Clinical-Biological dataset on four evaluation metrics: Precision, Recall, F1-Score, and AUC-
ROC is shown in Figure 5. Clinical-Biological data performed better across all metrics than the Pima
data because it included deeper diagnostic biomarkers and quantitative characteristics derived from
laboratory tests. Precision and Recall are improved, indicating the ability to identify cases of diabetes
with fewer misidentifications and fewer false positives. The Clinical dataset's AUC-ROC was also the
highest, indicating greater discriminatory ability. These findings suggest that prediction accuracy is
higher when the data set is more diverse and has characteristics that are clinically significant; therefore,
it is more realistic to clinical practice in the real world.
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Performance Comparison of Two data set used by Specific Features

Table 5. Performance comparison of two data dataset used by specific features

Model PIMA Indian Diabetes Dataset Clinical Biological Dataset
Features Used 8 Features: Pregnancies, Glucose, Multiple Features: Age, Gender, Blood
Blood Pressure, Skin Thickness, Pressure, Cholesterol, Glucose, WBC
Insulin, BMI, Diabetes Pedigree, Age Count, Liver Enzymes, BMI, etc.

Accuracy 0.75 0.80
Precision 0.78 0.83
Recall 0.72 0.77
F1-Score 0.75 0.79
AUC-ROC 0.82 0.86
Training Time (s) 0.03 0.12
Test Time (s) 0.02 0.09

Actual Label

Actual Negative

Actual Label

Actual Positive

Actual Negative

i
Predicted Positive Predicted Negative

Predicted Label

Figure 6. Confusion matrix for PIMA indian diabetes dataset

Actual Positive

1
Predicted Positive

Figure 7. Confusion Matric-Clinical

Predicted Negative
Predicted Label

biological dataset
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Heatmap of Model Performance Metric Values
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Figure 8. Heat Map representation of performance comparison

To interpret above Table 5 and Figure 6,7,8 indicates the existence of Key differences that are instigated
by the complexity of features, which is evident in the performance appraisal of the Pima Indian Diabetes
Dataset and Clinical-Biological Dataset. The presence of simple features of the Pima Indian Dataset (a
total of 8) enables the dataset to achieve 0.75 accuracy although it is less complex as compared to the
Clinical-Biological Dataset (more clinical and biological features) that achieves 0.80 accuracy. All the
performance measures within the Clinical-Biological model have a better result than the Pima model -
precision (0.83 vs. 0.78), recall (0.77 vs. 0.72), and F1-Score (0.79 vs. 0.75). The Clinical-Biological
model has also outperformed the Pima model in AUC-ROC (0.86 vs. 0.82) illustrating better
discriminative ability. Clinical-Biological model however takes much longer periods to train and test -
0.12 seconds to train and 0.09 seconds to test - compared to the Pima Indian Dataset that farts in record
time. All in all, the Predictive power of the Clinical-Biological Dataset is less efficient and has more
processing times although it is better and stronger. The Pima Indian Dataset Predictive power is also
efficient and faster, but a bit weaker.

Challenges faced by Two Dataset (Pima Indian Dataset Vs Clinical Biological Dataset)

Table 6. Challenges faced by two datasets (pima indian dataset vs clinical biological dataset)

Challenge Pima Indian Dataset | Clinical-Biological Dataset
Feature Set Limitations 3 4
Data Imbalance 4 4
Missing Data 3 4
Outliers 3 4
Feature Complexity 2 5
Data Quality 3 5
Generalization 4 3
Ethical Concerns 2 5
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CHALLENGES FACED BY TWO DATASET (PIMA INDIAN DATASET VS
CLINICAL BIOLOGICAL DATASET)

Feature Set Data Imbalance  Missing Data Qutliers Feature Data Quality Generalization Ethical Concerns
Limitations Complexity

= =8= = Pima Indian Dataset Clinical-Biological Dataset

Figure 9. Challenges faced by two dataset (pima indian dataset vs clinical biological dataset)

The Table 6 above and Figure 9, above indicate the different issues surrounding both the PIMA Indian
Diabetes Dataset and the Clinical Biological Dataset which are relatively similar with the PIMA Indian
Dataset having slightly simpler feature sets than the Clinical Biological Dataset which has much more
complex feature sets and is significantly more irrelevant. Missing data and outliers in any Dataset,
especially in the Clinical Biological Dataset, further increase imbalance. The Clinical Biological Dataset
will surely need more pre-treatment data than the PIMA Indian Dataset. The PIMA Indian Dataset is
easier to handle because of its limited range and feature complexity, whereas the Clinical Biological
Dataset can be more complex, even with the sophisticated features of the Diabetes Clinical Biological
Data set, which will demand more sophisticated techniques to handle. In addition, the PIMA Indian
Dataset is more likely to have fewer inconsistencies and raw data. Compared to the Clinical Biological
Dataset, the Clinical Biological Dataset shall be able to capture more discrepancies and noisy data,
which, on the other hand, will have an effect on the performance of the model. Compared to the Clinical
Biological Dataset, the PIMA Indian Dataset is more likely to exhibit generalization difficulties on
unobserved data. Conversely, the PIMA Indian Dataset will be more prone to generalization on the flip
side. Finally, the Clinical Biological Dataset raises potential ethical issues, most likely due to the
sensitivity of the health information, and confidentiality and data security must be considered.
Conversely, the PIMA Indian Dataset does not have such problems. In general, the PIMA Indian Dataset
is quite simple and simple to operate; nevertheless, the Clinical Biological Dataset is considered more
complex, and the possibility of more diverse and generally more generalized results is suggested, though
with even more significant ethical issues and questionable quality of data.

RESULT AND DISCUSSION

The comparative evaluation of eight machine learning models revealed that the variation of prediction
performance was quite high based on the evaluation metrics of performance. In the iterative measures
of precision and AUC-ROC, the best models for assessing the acceptability of linear-margin classifiers
as candidates in structured clinical datasets were Logistic Regression and SVM. The Decision Tree had
the highest recall, indicating that it was effective at identifying diabetes cases; however, it also showed
higher false positives. Ensemble learning yielded better results, with the final prediction being the mean
of the prediction probabilities from the several assessed models. The ensemble classifier achieved the
highest AUC-ROC (0.8709), further demonstrating that heterogenecous models are a useful tool for
minimizing variance and expanding the decision space. Although each model performed well, the
ensembles' learning led to more stable performance and greater balance in the long run.

Looking at the results of our models on Pima Indian and Clinical-Biological data, we find some
improvement in the Clinical-Biological data! The increase in Precision, Recall, and AUC-ROC
performance measures is due to the dataset's more diverse laboratory biomarker features, including
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insulin levels and diagnostic markers. Such characteristics enable greater learning about patterns of
disease and pathology. Conversely, the Pima dataset is important in history as a data source, but it has
fewer features; hence, the models we trained are less generalizable. Interestingly, the ensemble model
showed stable predictive performance, confirming that combining multiple classifiers does not
necessarily improve performance when constrained by the dataset. The comparison presents evidence
that feature richness is essential for better diabetes prediction and clinical utility.

It has been found that ML-based prediction systems can serve as practical decision-support systems for
early-stage diabetes screening, particularly with large, diverse patient data. Ensemble learning is an
engaging format that can be used to overcome the bias in an individual model and makes predictions
more stable, which is a necessity in clinical environments. In addition, the paper underscores the value
of integrating various clinical-biological variables and, notably, demonstrates the benefit of well-
integrated data in improving the accuracy and interpretability of models. These findings imply that the
selected features and the multimodal clinical databases need to be optimized, and that hybrid ML-DL
models can be applied in the future to enhance predictive performance. On the whole, is the suggested
ensemble-based structure a scalable means of conducting real-time risk evaluation of diabetes and early
intervention decision-making in healthcare systems

CONCLUSION AND FUTURE WORK

Statistical methods for measuring Precision, Recall, F1-score, and AUC-ROC were used to evaluate the
performance of eight machine learning algorithms. The findings justified that the data range features
and the intricacy of the classifiers largely influence model performance. Logistic Regression and SVM
scored higher in Precision and AUC-ROC, indicating high discriminative power and reduced false-
positive rates. Decision Tree had the highest Recall score, indicating greater sensitivity in detecting
positive diabetic cases; however, it also resulted in more false alarms. Overall, the Ensemble Learning
approach consistently outperformed other models, with an AUC-ROC of 0.8709, demonstrating that
combining models improved overall performance and generalization through reduced overfitting.
Moreover, across the Clinical-Biological and Pima Indian datasets, each comparison yielded statistically
significant results, indicating that feature diversity improves predictive performance (p < 0.05). As such,
the study concludes that ensemble-based classifiers, with diverse clinical input improve diabetes
prediction with statistical and clinical reliability for clinical decision support.

In future work, the model can be extended for real-time clinical use by integrating electronic health
records (EHRs) with streaming patient data, enabling continuous monitoring and predictions.
Incorporating deep learning architectures, such as LSTM and Transformer-based models, can capture
transitory shifts in patient biomarker trajectories. Future work can also improve the model's performance
and reduce computing costs by optimizing feature selection using algorithms such as genetic algorithms
and Bayesian optimization. To ensure privacy and safe federated learning between hospitals, research
can investigate the application of federated learning paired with a blockchain network to ensure tamper-
proof, decentralized patient data. Additionally, future work should introduce diverse datasets from
different demographic and geographical populations to improve fairness, bias-free decision-making, and
equity in the models. Future studies will be significantly essential to explore the incorporation of
explanation techniques (i.e., SHAP, LIME), which will improve transparency and interpretability for
making predictions by the physician.
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