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SUMMARY

Background: Interoperability, privacy, and the background of healthcare information are significant
issues in the healthcare industry, mainly because of the fragmentation of the data. Conventional solutions
are not secure, transparent, and accurate enough to share data effectively. Purpose: The purpose of the
study is to examine how blockchain and Artificial Intelligence (AI) may be integrated to streamline the
process of sharing healthcare data to be secure, intact, and provide superior decision-making in clinical
practice. Methods: The study will be based on the use of blockchain and Al in healthcare, namely, using
Smart Contracts to share electronic health records, Federated Learning to train Al models, and identity
access control by Al using blockchain systems. The models have been tested on benchmark healthcare
data, and parameters of the models, which include the data access latency, transactions per second, and
the accuracy of prediction. Findings: The Al-blockchain hybrid architecture was shown to have a
considerable enhancement in the workability of healthcare information, the stability of the system, and
the correctness of choices. The prediction models based on Al worked successfully in identifying medical
anomalies and analyzing various medical data. Also, blockchain provides integrity of data because of a
decentralized and unalterable ledger. Conclusion: The paper identifies the possibility of blockchain and
Al integration in health to implement the exchange of data. The proposed system is expected to increase
security, decrease the latency, and increase the accuracy of the prediction, which is a promising solution
to secure, efficient, and reliable data exchange in healthcare.

Key words: blockchain, artificial intelligence, healthcare data exchange, interoperability, smart
contracts, federated learning.

INTRODUCTION

The need for better data interchange enhanced patient care, and the optimization of internal processes is
prompting the healthcare industry to shift towards a more digitally focused model. The expansion of
electronic health records (EHRs), telemedicine services, medical wearables, and health information
technologies is associated with an ever-increasing volume and complexity of healthcare data. Still, this
progress is accompanied by persistent barriers to secure data exchange, privacy, interoperability, real-
time analytics, and other fundamental issues. A significant number of healthcare providers operate in
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silos, resulting in fragmented data repositories, redundant procedures, and suboptimal care pathways for
patients. An important barrier is the absence of a reliable, unified infrastructure for data sharing.
Traditional centralized databases are susceptible to cyber-attacks, single points of failure, and data
manipulation. These issues are exacerbated by HIPAA (Health Insurance Portability and Accountability
Act) in the US and GDPR (General Data Protection Regulation) in Europe, which impose strict privacy
control frameworks. Moreover, patients are often given inadequate control or access to their medical
information, further hindering the development of tailored and cooperative care models.

In the given scenario, Blockchain technology looks to be a powerful remedy that can transform the
exchange of healthcare data [8]. Different parties in the healthcare system can share confidential
information freely without a central authority, using a smart contract that could automate access control
processes at various levels. While blockchain secures structural integrity and trust within the framework,
gaps still exist in analyzing, interpreting, or drawing insights from the vast amounts of exchanged data
in healthcare [11]. Al assumes this role in integrating the technologies of modernity [15]. Al techniques,
particularly those in the fields of machine learning and deep learning, have performed well in tasks such
as predictive modeling, anomaly detection, anatomical diagnostics imaging, and even resource
allocation [10]. The merging of blockchains with Al can vastly improve decision-making capabilities,
as data can be scrutinized without breaching confidentiality through methods such as federated learning
and homomorphic encryption [13].

The application of Al alongside blockchain technology in healthcare ventures effectively addresses these
concerns [14]. The application of blockchain technology enables Al systems to work with encrypted,
non-editable data, thereby alleviating the risks associated with data integrity and privacy issues [1].
Patient privacy, security, and the clinical electronic health information interchange have been thoroughly
addressed, and concerns have been fully elucidated with the use of blockchain technology [2]. The
review aims to explore how Al integrated with blockchain technology can help mitigate challenges
regarding privacy and security in healthcare data. The review aims to analyze existing research and
current trends to develop an approach for utilizing Al and blockchains in transforming healthcare [3].

Thus, the merger of these two technologies seems inevitable [4][5]. When integrating these two
technologies seems inescapable, it significantly improves security and immutability and decentralizes
sensitive data stores. The public, researchers, government agencies (bottom region), and even physicians
and healthcare providers are the individuals who make use of these outcomes. Integration was done
through the APIs (yellow boxes), while IPFS handles the data storage of the 402 articles reviewed during
the research, only 79 integrated both Al and blockchain into healthcare systems. Upon a more focused
breakdown, 51 of these articles described implemented projects. In the adoption of Blockchains into
practice, interpretable trust and privacy issues arise from Al, making the use of these two technologies
seem unavoidable [4][5]. Al and blockchain together could radically improve the security, immutability,
and decentralization of sensitive data stores if combined.
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Figure 1 shows that the number of articles published annually has increased from 2017 to 2023, which
indicates the growth in the research on integrating blockchain and Al technologies in healthcare. The
period of a low number of publications was during the first years, as only 1 article was published in
2017, 2 in 2018, and 4 in 2019. A significant increase was, however, noted in the year 2020, where 12
articles were published, which could be attributed to the COVID-19 pandemic and the rapid growth of
these technologies. The latter trend was gradually increasing in the subsequent years, up to 16 articles
in 2021, 20 in 2022, and reaching a high in 2023, which denotes the rising significance and use of
blockchain and Al in healthcare systems.
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Figure 2. Implementation trends of research articles across years

In Figure 2, the details of the articles published from 2017 to 2023 regarding blockchain and Al in
healthcare are provided according to the year of implementation (implemented and non-implemented).
It uses a clear increasing trend of the number of implemented articles (symbolized in orange) over the
years, with a sharp increase beginning in 2021 to reach 15 implemented articles in 2023. Non-
implemented articles (represented by blue), on the contrary, include fewer but more consistent data and
a significant decline in 2021 and 2022. The trend in the graph indicates the rise in attention to practical
uses and real-life applications of these technologies, especially in recent years, which points to the
maturity and adoption of blockchain and Al solutions in healthcare.

The fusion of blockchain technology and Al presents a new opportunity for addressing long-standing
challenges in healthcare data management. These strategies focus on bringing changes in the healthcare
data management system in such a way that the system gets more effective, privacy-friendly, and of a
higher intelligence level. The major themes explored in this paper are:

e Comprehensive Analysis and Integration Framework: This research work presents an exhaustive
survey of the use of Al and blockchain technologies in healthcare, which reveals the
inadequacies of the current models of data exchange architectures. The examination serves as a
foundation for the design of a healthcare model that leverages the use of blockchain technology
for data storage and management while adopting artificial intelligence for data analysis and
decision-making.

e Identification and Addressing of Key Challenges: The research addresses the most significant
issues, including data isolation, poor system collaboration, exposure of confidential information,
and low operational effectiveness. It proposes solutions utilizing smart contracts, federated
learning, and decentralized systems to address these problems in healthcare institutions.

e Future-Oriented Conceptual Model: The innovation covers an advanced, flexible framework
that aids the growth of modern healthcare data systems towards patient data control ownership;
Al has grown towards democratic data, inter-system healthcare information flow, and system
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collaboration, a patient-adaptable model for the realization of dynamic, secure health
information systems based on advanced technologies.

BACKGROUND

The exchange of healthcare data facilitates the integration of care, optimal resource use, and timely
clinical interventions. With the ongoing digitization of hospitals, clinics, laboratories, and wearable
health devices, the volume of electronic health data being generated is constantly increasing. Therefore,
the sharing, integration, and analysis of this data across different systems becomes very important.
Unfortunately, current data exchange mechanisms do not sufficiently meet fundamental requirements
such as security, interoperability, and real-time access. Despite the global efforts to achieve HIEs and
EHR standardization, proprietary silos and inadequately run regulatory policies tend to have a
prevalence in the data infrastructure of most healthcare systems. In this section, the author has provided
a summary of the key influencing issues and challenges that hinder the effectiveness of healthcare data
exchange systems.

The Problem and Challenge

A critical issue of modern healthcare systems is that the data is in a silo; patients’ data are stored in
isolated, proprietary networks of various hospitals, clinics, and branches. The interdepartmental
electronic health record management of each healthcare institution seems to be conducted using separate
software systems, which leads to the absence of continuity between the systems. This structural
inadequacy limits the free flow of information, which results in the provision of inadequate patient
information, redundancy of tests, and restrictions to joint care activities. Unstructured data is also
associated with the harmful effect on clinical outcomes and the overall evaluation of the health system,
especially in situations where there is a necessity to organize the work of several providers.

* Security and Privacy

The level of commercial sensitivity and value of health records has made cybercriminals increase their
attention to the healthcare sector. The studies on data breaches have revealed that the cases of violation
of healthcare data have been on the rise, usually resulting in identity theft, loss of patient confidence,
and access to confidential information. Traditional data management and storage structures are prone to
many risks as a result of attacks that demand attention of a single aspect, such as ransomware, centralized
data modifications, and hacking. Furthermore, the necessity to comply with the privacy standards,
including the HIPAA and GDPR regulations, and other jurisdictional regulations of health data
protection, adds to the complexity of controlling access and preserving compliance and information
integrity.

* Inefficiencies

Most of the healthcare data management systems continue to have manual and semi-automated
processes in many aspects. It is worth noting that patient information exchange between smaller clinics
and external laboratories, which are essential in patient care, is still achieved through faxes, paper
records, and relics of bygone technological days. These methods are time-consuming, liable to mistakes,
and there is the risk of loss of data or communication breakdowns. Delays in the data-sharing process in
downstream hold back the rate of patient diagnosis, treatment plan design, and claims, which increases
costs without improving care quality.

* Interoperability

Interoperability still remains an issue in the creation of an inclusive health information system. The lack
of homogeneous data standards, criteria, proprietary system interface, and ontological framework is the
underlying issue. Within the framework of computerized systems, discrepancies still exist in formatting,
indexing, and the extraction of meaning from data. This non-standardization paralyzes the interactions
between healthcare facilities, and implementing the multi-data use toward research, tracking population
health status, and sophisticated Al analytics is impossible.
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Datasets

The effectiveness of integrating Al with Blockchain technologies in the exchange of healthcare
information is primarily predicated on the quality, applicability, and heterogeneity of the datasets used
for assessment, training, and simulation. This study applies the framework using multiple datasets
derived from actual healthcare records, as well as simulated blockchain and healthcare environments, to
achieve more accurate evaluation results. The datasets fall into these categories:

* Public Healthcare Datasets

These datasets, MIMIC-III (Medical Information Mart for Intensive Care) and eICU Collaborative
Research Database, are open to everyone and are used to create a simulation of the real-world healthcare
environment [12]. The records included in these datasets are the health records of ICU patients that have
been anonymized and consist of vital signs, medications, diagnostic codes, lab results, and mortality
outcomes. These datasets have become a popular choice for clinical researchers, serving as a source for
training Al models in the fields of diagnosis, patient monitoring, and outcome prediction.

* Simulated Blockchain Healthcare Networks

In order to measure the performance of blockchain structures in the exchange of medical data, the
efficiency of simulated environments containing Hyperledger Fabric, Ethereum (Private Chain), and
Quorum is evaluated. These testbeds depict orderly and secure transaction scenarios addressing health
data, patient consent, and data sharing between organizations. As a result, transaction throughput,
latency, and innovative contract execution are some of the metrics that are measured and evaluated in
real cases involving the use of the healthcare system.

* AI Model Training Datasets

The training and evaluation of Al models integrated within the cascading blockchain Al architecture
were conducted using both structured and unstructured datasets comprising patients' demographic data,
including age, gender, ethnicity, electronic health records (EHRs), and clinical notes. Part of these
records are very valuable contextual materials that give a detailed explanation of the patient's medical
history and the claims. Also, there are some additional supporting cross-sectional diagnostic images, like
chest X-rays and MRIs from NIH and Kaggle, which have been put for image-based diagnostic
evaluations. Moreover, the dataset has been enhanced with the inclusion of health data obtained from
various sensors and wearable devices, which makes it possible to have real-time monitoring and
assessment of an individual's health condition. This data opens up the possibility for the use of a variety
of machine-learning methods, such as classification, prediction, anomaly detection, and natural language
processing, to name a few. In order to comply with ethical health information standards and regulations,
privacy-respecting measures such as federated learning or the creation of synthetic data are being used.
This large and diverse set of data is what guarantees the proper working of the architecture, which is
also supported by exhaustive validation of different healthcare tasks that show its value and feasibility.

BLOCKCHAIN-BASED METHODS

Blockchain or distributed ledger technology (DLT)- based techniques have effectively addressed the
long-standing issues of trust, security, and access control in the exchange of healthcare information. One
of the primary advantages is data immutability, which means that once healthcare records, such as
medical histories, diagnostic reports, and consent logs, are recorded in the blockchain, no alterations or
deletions can be made without the approval of the network participants [9]. Data of this kind will enhance
the responsibility of the providers and support legal audit compliance in healthcare. Unlike centralized
systems that are prone to data breaches, blockchain enables the decentralized sharing of health
information by storing data at verified nodes, such as hospitals, labs, and insurers. This allows real-time
access from various institutions while maintaining data sovereignty. Moreover, smart contracts would
allow patients to grant controlled access to their health records for specified durations, which is
automatically revoked afterward.
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Permissioned blockchains, such as Hyperledger Fabric or Quorum, which can be accessed by authorized
parties, are predominantly applied in the healthcare system due to their reliable identity and role-based
access control management systems. Such platforms have been constructed keeping in mind guarded
health information because privacy and compliance are essential. The other interesting aspect is the
establishment of audit trails and provenance tracking; all transactions, together with access requests by
any user, are recorded. The access to patient data, such as time and context, as well as identity, is entirely
traceable. Digital tokens may also be used to delegate rights and control of data, permitting it to be
managed, and through tokenization techniques, patients can become more in control on a case-by-case
basis. Finally, blockchain-based Al technology integration is safe as it uses privacy-preserving machine
learning approaches such as federated learning [6][7]. With training collaborative models, sensitive
information is protected when it is trained on distributed datasets. Sophisticated protective analytics
based on innovative diagnostics, risk evaluation, and treatment planning are supported without the
danger of divulging sensitive data. All these developments based on incorporated blockchain technology
make the healthcare infrastructure more powerful and allow patients to take control over the process of
data sharing. Figure 3 depicts how blockchain and Al can be integrated in healthcare.
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Figure 3. Blockchain- and Al-Integrated architecture for decentralized and secure healthcare data exchange
Performance Comparison of Various Blockchain-Based Models

Table 1 summarizes different research and solutions that combine blockchain technology and artificial
intelligence (Al) to solve specific issues within the healthcare field. It contains the information about
the topics covered, the methodology or the techniques used, the available methods, as well as the
weaknesses of the current methods and the findings. The table offers information on the application of
the various models, including federated learning and blockchain, decentralized telemedicine, and Al-
based blockchain solutions, in enhancing privacy, security, scalability, decision-making, and operational
efficiency within healthcare systems. The measures of performance indicated, including accuracy,
latency, and security scores, have shown how these technologies are effective in solving single issues
like the privacy of data, management of healthcare records, and accuracy in prediction in diverse
healthcare applications.
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Table 1. Comparison of blockchain and Al integration approaches in healthcare

Ref Problem Approaches/Algorithms/Techniques/Methods | Existing Approach
(es)
[16] Deep residual inception Deep residual inception encoder—decoder Conventional CNNs
encoder—decoder network for network
medical imaging synthesis
[17] Computer-aided diagnosis CAD systems Manual
interpretation
[18] Predictive analytics and Al with blockchain Traditional logistics
automation in logistics systems
[19] Blockchain technology in Blockchain for patient-driven interoperability Centralized
healthcare healthcare systems
[20] Unrecognized bias in medical Framework for evaluating bias in medical Al Conventional
Al models prediction models
[21] Privacy-aware COVID-19 Lightweight CNN and blockchain Traditional image
detection recognition
[22] | Secure vaccine distribution and Al and blockchain for secure vaccine tracking Centralized vaccine
tracking systems
[23] Al bias in brain tumor Al framework for brain tumor segmentation Manual diagnostic
segmentation interpretation
[24] Privacy in healthcare with Federated learning and blockchain Centralized
federated learning healthcare records
[25] Decentralized telemedicine Blockchain for decentralized telemedicine Traditional
framework centralized
healthcare systems
[26] | Al-based COVID-19 detection Al and blockchain for COVID-19 detection Conventional Al
in biomedical images detection models
[27] Protecting healthcare records Blockchain and federated learning Centralized
healthcare records
[28] Blockchain in healthcare Blockchain integration for secure healthcare Legacy healthcare
records systems
[29] | Big data security in healthcare Fragmentation and blockchain Centralized big data
security
[30] Metaverse for healthcare data Al, blockchain, and explainable Al Conventional
security immersive platforms
[31] | Blockchain and Al integration Blockchain and distributed Al Standard IoT
in loT platforms
[32] | Federated learning for medical Federated learning with blockchain Centralized systems
data security
[33] | Secure telemedicine workflows Blockchain-based telemedicine IoT Manual telemedicine
workflows
[34] | Blockchain and Al for medical Integrated blockchain and Al models Traditional decision
decision support systems
[35] | Privacy and utility in healthcare Blockchain for privacy preservation General privacy
data frameworks
[36] Privacy in Al-based big data Security framework for Al big data Standard data
systems protection models
[37] Blockchain in IoT ecosystems Decentralized blockchain for IoT Centralized IoT
networks
[38] Healthcare decision-making Al-driven decision models Manual decision-
with AL making systems
[39] | Federated learning for COVID- FLED-block: FL + DL + Blockchain Centralized
19 prediction prediction models
[40] | EHR security and access control MedRec blockchain for EHR Conventional EHR
systems
[41] Collaborative learning in Federated learning with blockchain Single-institution
healthcare systems
[42] | Privacy protection in blockchain Privacy threat models for blockchain Standard privacy
methods
[43] Federated learning in edge Two-layer blockchain for mobile edge Single-tier federated
networks systems
[44] Trust in health information Blockchain-based data integrity Non-transparent
exchange medical systems
[45] Scalable data access in ABE and blockchain for access control Traditional access
telemedicine control systems
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[46] Secure telesurgery operations Blockchain-based telesurgery framework Manual telesurgery
coordination
[47] Al and blockchain for Al-blockchain healthcare records management Conventional EHR
healthcare records systems
[48] | Clinical trial data transparency Blockchain-based clinical trial data Non-transparent trial
systems
[49] Federated learning for model Federated learning with consortium blockchain Centralized learning
heterogeneity systems
[50] GDPR-compliant health data GDPR compliance modeling in blockchain Non-compliant data
blockchain frameworks
[51] | Verifiable timestamps in digital Blockchain-based timestamping Centralized
records timestamping
[52] | Corda vs Ripple for blockchain Comparative study of Corda and Ripple Legacy blockchain
use models
[53] Blockchain adoption Case study on blockchain adoption Basic supply chain
transparency systems
[54] Privacy and regulatory Regulatory framework for blockchain privacy Unbalanced privacy
compliance challenges policies
[55] | COVID-19 vaccine distribution Blockchain-based vaccine logistics Paper-based vaccine
tracking
[56] Blockchain in academic Blockchain for certification audit Manual certificate
certification issuance
[57] Security attacks in blockchain Categorization of blockchain security threats General security
protocols
[58] Graph-based learning for Graph-based learning model Traditional graph
complex data algorithms
[59] Blockchain for education Blockchain learning passport Paper-based
certification certificates
[60] Data bias in model training Blockchain with crowd annotation Standard data
annotation
[61] Challenges in computer-aided CAD systems for radiology Radiologist-
diagnosis dependent
interpretation
[62] Health crisis access barriers Longitudinal cohort analysis Generalized access
[63] | Scaling Al learning algorithms Al scalability theory Limited-scale
algorithms
[64] GNN:s for visual pattern Graph neural networks and transformers CNN, RNN models
learning
[65] Al in healthcare decision Al-driven decision support models Rule-based systems
support
[66] Learning in graph domains Graph-based learning model Traditional graph
traversal algorithms
[67] Blockchain for education Blockchain for lifelong learning passport Paper-based
certificates
[68] Data bias removal with Blockchain with crowd annotation framework Standard annotation
blockchain without audit
[69] Computer-aided diagnosis in CAD systems for radiologic diagnostics Radiologist-
radiology dependent
interpretation
[70] Barriers to healthcare access Cohort study on access barriers Generalized access
during COVID-19 without context
[71] | Scaling Al learning algorithms Al scalability theory and architecture Limited-scale Al
algorithms
[72] | Graph neural networks in visual GNN s and transformers for visual pattern CNN and RNN
learning learning models
[73] Al in healthcare decision- Al-driven decision support models Manual and rule-
making systems based systems
FINDINGS

Innovations at the intersection of Al and blockchain technology have revealed a wealth of new insights
regarding the change Al is able to bring to healthcare data as well as its systems and networks in the
context of triad domains Al-Blockchain-Healthcare.
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Enhancement in data integrity

Improving data integrity is a critical emerging benefit as a result of the implementation of blockchain.
A diagnostic report, a patient history, or a consent log cannot be modified or deleted because of an entry
consensus mechanism that is provably secure. Each entry is actually encrypted, thus improving data
security and enabling its complete traceability. For any claim, legal dispute resolution, or forensic
examination, the audit trail is the only validated source that is a true repository of data, chronologically
providing enhanced credibility information over time.

Improvement in analytical capability following Al integration

The enhancement of analytic capability through Al implementation is the second significant finding.
The embedding of deep learning and NLP models, as well as unsupervised anomaly detection, on top of
a blockchain system can access federated and real-time datasets while maintaining privacy owing to the
data architecture of blockchain. These algorithms provide sophisticated automated clinical note
abstraction and disease forecasting as well as early warning systems for anomalies like abnormal vitals
or imaging. With the integration of blockchains and Al, accurate, actionable insights are generated at
clinical decision points, leading to efficient clinical actions powered by timely clinical interventions.
The unique features of blockchains' immutably secured data heritage, provenance, and Al's dynamic
action generating insights transform clinical care.

Dynamic and transparent consent management

A further notable finding relates to the development of dynamic and lucid consent management. Current
healthcare systems are not capable of providing data-sharing workflows while preserving the privacy of
a patient. A programmable logic patient access control may be implemented using smart contracts on
blockchain. For instance, a patient can impose terms like which parties can access their medical data,
for what duration, and under which conditions. The system will automatically enforce these controlled
conditions. This model minimizes reliance on data intermediaries and allows patients greater control
over their data governance, thereby improving trust and legal attribution.

Systems Operations within Healthcare Facilities

Additionally, the operational framework increases operational efficiency at all levels of healthcare
management. The manual work methods of form-filling, identity checks, and external validation, in
particular, choke information flow and add to the backlog of administrative work. By automating these
processes using smart contracts and permissioned blockchains, institutions can realize reductions in
inter-silo paperwork, improved response times, and enhanced interoperability. In addition to lowering
operational expenses, these systems improve care delivery by enabling clinicians' timely access to data
due to the elimination of unwarranted delays. The integration of Al with blockchain enhances the
efficiency of tamper-proof security, intelligent decision support, patient-centric consent management,
operational workflow automation for healthcare data exchange, and significantly improves operational
efficiency. These results clearly ascertain the value of infrastructures that combine blockchain and Al to
radically change healthcare ecosystems to be more data-centric.

Performance Comparison: Blockchain + Al and Traditional Systems

In Figure 4, a closer look is made at the performance of a hybrid blockchain and Al-based system in
comparison to a classical one, using three crucial metrics, including data access latency (in
milliseconds), transactions per second (TPS), and prediction accuracy (as a percentage). The comparison
highlights the increased efficiency and functions of the blockchain + Al integration, which is better at
fulfilling its responsibilities due to less time to process a transaction, lower latency rates of accessing
the data, and better accuracy of prediction. These findings indicate that the Blockchain + Al system has
a significant number of benefits in terms of processing speed, responsiveness of the system, and
precision of the decision-making model, especially in the cases of complex healthcare data exchange.
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Figure 4. Performance comparison of blockchain + Al and traditional system
Efficiency of Blockchain Model Security, Scalability, and Privacy Comparison

Figure 5 is the comparison of the four models of blockchain: Hyperledger Fabric, Ethereum, Quorum,
and Corda in relation to three critical variables, including Security Score, Scalability (TPS), and Privacy
Score. The graph uses pastel colors for all models to illustrate performance across these areas. The score
of the security of each model is the Security Score, the number of transactions that each model has been
configured to handle each second is displayed in the Scalability score, and the effectiveness of privacy
protection is in the Privacy score. Hyperledger Fabric tends to have the best values in each and every
measure, whereas Ethereum is the least competitive in scalability but has a competitive score in security
and privacy.
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Figure 5. Efficiency comparison of blockchain models in terms of security, scalability, and privacy
CONCLUSION

This article investigates the confluence of artificial intelligence (Al) and blockchain technology in
medical care, focusing on their capacity to transform the exchange and management of sensitive
healthcare data. The adoption of Al, which has the power to predict and make decisions, in a blockchain
system that is immutable and decentralized, helps to alleviate the issues of data fragmentation, privacy,
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inefficiencies, and lack of interoperability in healthcare systems. The research reveals that the
implementation of the healthcare system using the Blockchain + Al model can bring in an efficient
exchange of data and security of the system, incorporated with a higher degree of accuracy in decision-
making, as opposed to what can be achieved by traditional systems to a great extent. Data access latency,
transactions per second, and prediction accuracy are some of the significant indicators where this
integrated system is seen to outperform the traditional ones with higher speed, lower latency, and greater
precision in clinical decision-making. Moreover, the paper demonstrates that when Al is integrated with
blockchain-based models such as Hyperledger Fabric, it provides excellent performance in security,
scalability, and privacy, thus, the best solution for the management of sensitive healthcare data. The
incorporation of edge Al has the additional benefit of optimizing the system, cutting down on the delay,
and preserving the privacy of the data by eliminating the need for the pooling of data in one central
location.

The implementation of worldwide interoperability standards is a prerequisite for the full benefits of such
integration to be reaped. The regulations set out in those standards will include borderless and
institutional data exchanges, thus enabling blockchain and Al frameworks to function efficiently in
multi-vendor, multi-jurisdictional environments. Apart from that, developing firm ethical and legal
policies will play an indispensable role in the establishment of a data governance framework that is
transparent, fair to all stakeholders, and in line with patient autonomy in the digital health ecosystem.
The combined use of Al and blockchain-based technology is set to be a game-changer in data
management in healthcare by providing a system that is more secure, efficient, and trustworthy, as well
as being able to promote patient privacy and self-governance, while at the same time, it leads to better
healthcare outcomes overall. The coming research and technology advances, as well as the regulatory
frameworks that are going to be put in place, will further facilitate their application and integration into
healthcare systems around the globe.
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