
 

 

 

  
  

Preliminary report  

 UDC: 624.011.1.074.2  

DOI: 10.7251/afts.2013.0508.043B  

  

ANALYSIS OF SNAP BEHAVIOUR OF SHALLOW  

CYLINDRICAL SHELLS USING THE FINITE STRIP METHOD  
    

   Borković Aleksandar1  

  

 
  1Univerzitet u Banjaluci, Arhitektonsko-grañevinsko-geodetski fakultet, E.mail: aborkovic@agfbl.org   

  

  

   ABSTRACT  

  

 This paper presents one approach for the analysis of snap behaviour of simply supported elastic shallow  shells. 

Structure is discretized with the finite strip method. Displacement field is approximated with  series of products 

of polynomials and harmonic functions. Only geometric nonlinearity of von Karman  type is considered. 

Equilibrium equations are derived via principle of stationary value of total potential  energy and solved with arc-

length method. Total Lagrangian approach is used. Detailed analysis of one  shallow shell is performed. Obtained 

results are in good correspondence with the ones from the finite  element method.  

  

   Key words: shallow shells, finite strip method  

  

  

INTRODUCTION  

  

Cylindrical shells are very popular in contemporary civil engineering. Due to their favourable 

stiffness/weight ratio, they are almost irreplaceable for long spans. These structures are characterized 

with regular geometry, i.e. they have arbitrary cross section which runs constantly in longitudinal 

direction. Special class of these constructions are shallow shells, whose specific behaviour is subject 

of many present-day researches. In fact, elastic shallow shells subjected to vertical loading follow 

complex equilibrium paths which may include snap-through and snap-back behaviour. Snap-through 

is observed when structure reaches load limit point, and snap-back when the structure reaches 

displacement limit point. Although not common in practice, this behaviour is experimentally proved  

[1].   

  

Behaviour of mechanical systems is described with partial differential equations which have closed 

form solutions for just few simple cases. This is the reason why the approximative solution is looked 

for. Domain is usually discretized, and nonlinear system of algebraic equations is obtained. This 

system is commonly solved with incremental-iterative procedures, such as Newton-Raphson method, 

where the load or displacement control is applied. Unfortunately, these procedures cannot describe 

booth kind of snap behaviour. On the other hand, arc-length method can describe both load and 

displacement limit points [1].    

  

Finite strip method (FSM) is suitable for analysis of 'long' structures because of adopted discretization 

of continuum. It proves more efficient than finite element method (FEM) for the analysis of certain 

classes of structures [2,3]. While FEM uses polynomials for discretization of plane structures in both 

directions, FSM uses fast converging trigonometric functions for approximation in longitudinal 
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direction. It follows that FSM is semi-analytical procedure, unlike the FEM which is purely numerical. 

Geometric nonlinear analysis of structures using the FSM is occupying researchers for many years. 

Nonlinear behaviour of rectangular plates is analysed in [4, 5]. However, for structures with more 

complex geometry, authors commonly use spline functions [6]. According to available literature, this 

is the first paper which deals with snap behaviour of shells using the harmonic functions. Shells are 

modelled with plane finite strips which are derived according to Kirchhoff's presumption for the 

bending of the thin plates where the displacement field of the plate is described as the function of the 

displacements of the middle plane  

  

Adopted finite strip and assumed displacement field are briefly presented. Derivation of nonlinear 

equations of equilibrium and arc-length method are described concisely. At the end, detailed numerical 

example of one shallow shell is given with comparison of the FSM/FEM results.   

  

  

FINITE STRIP INTERPOLATING FUNCTIONS  

  

Finite strip of flat shell with eight degrees of freedom is given in Figure 1. Unlike the finite elements, degrees 

of freedom of finite strip are displacement parameters in nodal lines.   

  

   
Figure 1 Finite strip interpolating function and displacement parameters for m=1  

  

Displacement components are approximated with series of products of polynomials and trigonometric 

functions   

    
 nst nst nst 

  u x y0( , ) 
=∑u x Y y0m( ) m ( ) v x y0( , ) 

=∑v x Y y0m ( ) m
v ( ) w x y( , ) 

=∑w x Y ym ( ) m ( ).  (1)  
 m=1 m=1 m=1 

  

where nst is the number of series terms considered in analysis. Trigonometric functions are chosen as 

the free vibration eigenfunctions of Bernoulli-Euler beam which are Ym=sin(mπy/a) for simply 

supported boundary conditions. Because of their nature, these functions are especially efficient for 

dynamical analysis of structures [7]. In order to satisfy boundary conditions v(0)≠0 and v(a)≠0, 

functions Ym
v are usually taken as cos(mπy/a). Wang and Dawe [4] shown that this function cannot 

adequately represent absolutely free displacement in y direction when nonlinear effects are considered.  

They proposed other functions which are used here:  
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   Y1 
v = a / 2 − y Ym

v = sin ([ m −1)πy a/ ] , m = 2,3,...nst .  (2)  

  

  

This kind of boundary conditions describes supporting on diaphragms. End cross sections have 

restrained displacements in its own plane and absolutely free out of it. Strip displacement in transverse 

direction is approximated with polynomials which are linear for in-plane and cubic for out-of-plane  

displacement 

components   

   

wm( )x 
= (1−3ξ ξ2 + 2 3 )wjm 

+(x − 2bξ ξϕ2 +b 3 ) jm 

 +(3ξ ξ2 + 2 3 )w( j 1 m+ )+ −( bξ ξϕ2 + b 3 ) ( j 1 m+ )= N qTw wm. 

  

  

EQUILIBRIUM EQUATIONS  

  

Following Kirchhoff's theory, thin plate has only three strain components   

εxy   u0,y + v0,x − 2zw,xy  (u0,xu0,y + v0,xv0,y + w,xw,y )  

  

which can be decomposed into linear and nonlinear in displacement gradients. Strain vector can also 

be decomposed into membrane and bending part  

      

 ε εx   x0   κx   u0,x + (1/ 2)(u02,x + v02,x + w,2x )   w,xx  

        2 2 2    

   ε εy  =y0  − z κy  =  v0,y + (1/ 2)(u0,y + v0,y + w,y ) − z  w,yy   (5)  

 ε εxy    xy0 2κxy  u0,y + v0,x +(u0,xu0,y + v0,xv0,y + w w,x ,y )  2zw,xy  

  

where it is observed that nonlinear members influence only membrane strain, while the curvatures 

remain the same as in linear analysis. This paper considers only addends which are nonlinear in 

deflection gradient which matches von Karman theory [3].   

  

Total potential energy of elastic system is equal to sum of work of external forces and strain energy  

 u0m ( )x = (1−ξ ξ)u jm + u( j 1 m+ ) = N quT umu ξ= x 

b/ 

 v0m( )x = (1−ξ ξ)v jm + v( j 1 m+ ) = N qTu umv 

    (3)  

         

εx   

     ε = 

εy  = 

u0,x − zw,xx 

v0,y − zw,yy 

  (1/ 2)(u02,x + v02,x + w,2x ) 

  2 2 2 

+  (1/ 2)(u0,y + v0,y + w,y ) 

 

 = 

 εL + εNL  

 

(4)  
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Π=W+U. Strain energy is defined as integral of product of stress vector and strain vector over the 

volume of the body  

    

1 ∫ε σT dV = 
1 ∫εTDεdV .  (6)     U = 

 2 V 2 V 

  

In Eq. (6) vectors σ and ε consist of components of second Piola-Kirchhoff stress tensor and 

GreenLagrange strain tensor, respectively. D is constitutive matrix, derived according to generalized 

Hooke's law. All quantities are measured in reference to undeformed configuration which means that 

the total Lagrangian approach is used. For a system in equilibrium, gradient of total potential energy 

must have stationary value. In fact, it proves that this value is minimal. Appling this principle, 

equilibrium equations are obtained  

  

≠ 0 ⇒ 
∂Π 

=    δΠ = ∂Πδq = 0 δq Ψ( )q R q F= ( ) − = 0. 

 (7)  

 ∂q ∂q 

  

Expression (7) represents system of nonlinear equations where Ψ is the vector of residual (unbalanced) 

forces; R is the vector of internal nodal forces; F is the vector of externally applied load, here 

presupposed independent of displacement. This system is usually solved using the successive 

linearization by Taylor series expansion where gradient of Ψ should be found  

  

∂Ψ 

    = KT  (8)  

∂q 

  

result of which is well-known tangent stiffness matrix.  

  

  

SOLVING EQUATIONS  

  

In order to follow complex equilibrium paths which consist of snap-through and snap-back behaviour, 

linearised arc-length method is used for solution of equilibrium equations [1]. This method introduces 

load proportionality factor λ as the new variable  

  

   Ψ(q,λ) =R q( ,λ λ) − F= 0.  (9) 

    
Because of a new unknown variable, new constraint equation is necessary. According to simplified 

linearised arch-length approach, constraint equation is  

      

 

   ∆q q q qT
pδ =∆ T

p (δ δλδ+qt ) = 0  (10)  
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and the iterative load factor δλ is calculated as  

      

−∆qTpδq 

   δλ
= 

T   (11)  

∆qpδqt 

  

where ∆qp is incremental predictor displacement vector, δqt is vector of tangential displacements and  

δ q is iterative residual displacement vector  

    

 

   δq =−KT
−1Ψ δqt = KT

−1F.  (12)  

  

After the new load factor is calculated, updated displacements are obtained and equation (9) checked. 

Because of numerical nature of procedure, equilibrium will never be satisfied and appropriate 

convergence criterion must be employed. Here it is introduced via ratio of Euclidian norms of the 

vector of unbalanced forces and the vector of current external load  

  

   Ψ / λ αF ≤ ,  (13) 

    

where α is some prescribed value, usually between 10-2 and 10-3, depending on the problem considered 

and desired accuracy. Presented solution procedure is based on predictor-corrector technique where 

arc-length method iterations act as correctors while predictor solution is determined from  

    

∆l 

   ∆λp = ±  (14)  

 δ δqTtqt 

  

where ∆l is the given incremental arc-length. Problem of choosing sign in Eq. (14) is heavily addressed 

in literature and sign of the minimum eigenvalue of tangent stiffness matrix is recommended as the 

most accurate [1, 6]. In this research it is found that this criterion can lead to wrong solution, and the 

sign of current stiffness parameter is used instead.   

  

  

  

NUMERICAL EXAMPLE AND DISCUSSION  

  

Presented procedure is programmed into software package Wolfram Mathematica by upgrading the 

program presented in [7], and the result is code named NOLA (nonlinear analysis). This program is 

now able to conduct geometric nonlinear analysis of many engineering structures such as: rectangular 

plates, thin-walled beams, cylindrical shells etc.    

  

In order to validate the presented method, detailed numerical analysis of the shell given in Figure 2 is 

performed. Shell is discretized with finite strips and finite elements. Using the conditions of symmetry, 

only half of the shell is modelled. Results obtained with NOLA are given for two discretizations, 
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designated as D1 and D2. D1 model is discretized with 12 strips and 7 series terms, while the model 

D2 has 36 strips and 15 series terms. Since every nodal line has 4 degrees of freedom, it follows that 

model D1 has 364 (13x4x7), and model D2 2220 (37x4x15) degrees of freedom.   

  

  
  

Figure 2 Geometric and material characteristics of shallow shell with load disposition  

  

Finite element analysis is performed using the commercial software package Abaqus with the mesh of 

1500 finite elements. STRI3 element of flat shell with six degrees of freedom per node is used. This 

element is the only one in Abaqus library which imposes Kirchhoff's assumption analytically [8]. 

Adopted model has 816 nodes which gives total of 4896 degrees of freedom used in analysis.   

  

From presented results it is clear that analysed shell does not show snap-back, but only snap-through 

behaviour. Figure 3 shows excellent agreement of deflection of middle point for all three models. Slight 

discrepancy is observed for discretization D1. This discrepancy is more pronounced for longitudinal 

displacements, i.e. end shortening, given in Figure 4. Good correspondence of moments in the middle 

of the shell is observed in Figures 5 and 6. While moments Mx are almost identical, moments My show 

some differences. One of the most interesting graphs is given in Figure 7 where the increment of normal 

force Nx changes sign after the snap. The largest disagreement of the results occurs here, exclusively 

for the discretization D1. Similar observation can be made for the moments My, given in the Figure 8.  

Convergence of normal forces by number of finite strips and number of series terms is given in Figures 

9 and 10. Convergences of quantities which require denser meshes are given intentionally. Moments 

and displacements converge much faster. According to this convergence tests, discretizations D1 and 

D2 are adopted. Convergence of normal forces in Abaqus is given in Figure 11, according to which the 

mesh of 1500 finite elements is adopted.  

  

Discretization D1 gives excellent results before the second limit point is reached, i.e. just before 

hardening of the shell. However, for the normal forces, at the end of the loading, there are severe 

discrepancies and the D2 mesh is required for accurate values. This disagreements occur due to low 

degree of adopted polynomials and slow convergence of the function which describes structure 

endshortening.  

  

Discrete points which are designated on the graphs depend on adopted minimal and maximal arclength. 

Desired smoothness of the curve can be obtained by variation of these parameters. It is interesting to 

notice that it is a problem to obtain values of the desired quantity for the exact value of applied load 

because procedure always passes the complete load, 1-20 %, depending on the maximal arc length. 

Therefore, it was necessary to use very small arc-length in order to obtain presented results for 

convergence.  
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Figure 3 Comparison of deflection of shell centre  

  

  
  

  

Figure 4 Comparison of longitudinal displacement component of point 2  

  

   
Figure 5 Comparison of moments Mx1   

  

  

  



  

Borković, A. Analysis of snap behaviour ......             Archives for Technical Sciences 2013, 9(1), 43-

51  

                       Technical Institute Bijeljina, Archives for Technical Sciences, Year V – N0 9.            

49  

  

     
Figure 6 Comparison of moments My1   

  

   
Figure 7 Comparison of normal force Nx1   

  

   
Figure 8 Comparison of normal force Ny1   
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Figure 9 Convergence of normal force Ny1 by number of series terms for discretization with 12 strips  

  

   
Figure 10 Convergence of normal force Nx1 by number of strips for discretization with 15 series terms  

  

   
Figure 11 Convergence of normal forces at the shell centre by number of finite elements  

  

  

CONCLUSION  

  

Using the FSM with harmonic functions, complex behaviour of idealised elastic structures can be 

described. However, in order to obtain realistic structural response it is necessary to include effects of 

material nonlinearity. If the structural response is geometrically nonlinear, material will behave 

elastically for only few specific cases. Also, it is important to include influence of geometrical 

imperfections and non-ideal boundary conditions in order to describe structural behaviour. Appropriate 

introduction of all of these effects is a difficult task which is still not completely solved in structural 

analysis.  

  

FSM and FEM give identical results if the modelling is done carefully. Definition of boundary 

conditions has the most influence on the relation of results of these methods. In order to reach same 

degree of accuracy FSM requires significantly less number of degrees of freedom, for some types of 

structures. Comparison of results between FEM and FSM with harmonic functions did not receive 

much attention in literature. According to available literature, snap analysis of shells, using the FSM 

with harmonic functions, is presented for the first time in this paper.  

  

Further research will include definition of different boundary conditions, modelling of structures with 

longitudinally variable characteristics, and introduction of material nonlinearity.  
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