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SUMMARY 

Within the database infrastructures of large-scale enterprises and government organizations, preserving 

swift and dependable disaster recovery processes continues to be particularly challenging with increasing 

data volumes and greater complexity in systems. This study conducts an evaluative analysis of advanced 

failover and backup methods, comparing traditional cold standby models to multi-region, transaction-

aware replication architectures. Controlled fault injection across OLTP and OLAP systems yielded results 

showing 64% reduction in average Recovery Time Objective (RTO) from 430 seconds to 155 seconds. 

Under write-heavy workloads, RPO drift was improved by over 70%; decreasing from 8.1 seconds in 

legacy systems to 2.3 seconds in the systems with adaptive replicas. There was also an improvement of 

19% in the success rate of transaction rollbacks, whereas predictive failure detection reached 91% 

accuracy in forecasting excessive write queue formation. Additionally, the study demonstrates a reduction 

in cost-efficiency of modern architecture, showcasing a 47% decline in recovery cost per gigabyte of 

restored data. These results purposefully outline the significant operational and technical benefits 

accompanying the implementation of software-defined disaster recovery techniques within high-

availability environments. 

Key words: disaster recovery, large-scale databases, recovery time objective (RTO), multi-region 

replication, predictive failover, backup strategy optimization. 

INTRODUCTION AND PROBLEM DEFINITION 

Motivation: Evolving Threats to Data Availability 

Large-scale databases underpin the global information systems of the world today interconnected 

through a web of digital interconnectivity and real-time data transactions. Governments, financial 

institutions, healthcare networks, and multinational corporations rely on these infrastructures not only 

for daily operational needs but also for the continuous provisioning of critical public and private services 

[1]. The modern digital world poses a myriad of threats which include hardware failure, software bugs, 

sophisticated cyberattacks, and even insider breaches coupled with service outages on a regional scale 

due to natural disasters or geopolitical disruptions. The constantly changing environment brings forth 

new risks to the integrity, security, and availability of data [2]. 
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These vulnerabilities have become more obvious with the increased emphasis on mandated high-

availability, decentralized infrastructures, and splintered hybrid cloud deployments. While their fault 

tolerance capabilities continue to be problematic, high-performance databases do tend to excel in terms 

of transactional throughput, concurrent handling, and low latency operations [3]. For mission essential 

functions, a few minutes of system unavailability can equate to substantial economic impact, loss of 

public confidence, prospective litigation, and in certain situations, irrevocable damage to critical national 

infrastructure. With mounting dependence on AI-powered applications, Internet of Things (IoT) devices, 

and distributed ledger technologies, organizational perimeters on data loss, data breach, or diminution 

of service metrics have drastically narrowed [4]. 

Supervisory and Cross-Industry Analysis of Major Incidents Show a Steady Increase of frequency and 

accuracy Over the Past Decade Supervision for this cross-industry over this decade covers significant 

database outages using a ten-year scope of iterative intersection covering six foundational sectors. The 

result affirms a continuous increase in measures of incident capture and capture. Table 1 shows 

aggregate capture of downtimes reported from 2015 to 2024 spanning across six foundational sectors. 

On the whole, finance, healthcare, and e-governance have the lead in aggregate incident count, while 

sectors such as telecom and education show lower but still noteworthy dip in outage rates. Meanwhile, 

average unplanned downtime durations tracked from 1.9 to 4.1 with e-governance systems leading 

sustained unresponsive periods. Moreover, critical failure events—including disrupting events that 

impact data quality and cease core service channels—within certain sectors accrete to 27% of incidents. 

Table 1. Global database downtime incidents by industry (2015–2024) 

Industry Total Incidents Average Downtime (hrs) Critical Failures (%) 

Finance 138 3.4 22 

Healthcare 121 2.8 18 

E-Governance 102 4.1 27 

Retail 96 2.3 15 

Telecom 89 3.6 21 

Education 67 1.9 10 
 

The identified issues alongside the data presented in the table highlight that there is a clear gap that needs 

to be addressed regarding large scale databases and their disaster recovery solutions. The traditional 

strategies of using backups and offline replicas are failing due to the need for faster response and 

recovery times that modern ecosystems require and their automation capabilities. There is a new trend 

where the focus is on intelligent self-recovering systems that geographically utilize backup sites with 

strict RTO and RPO minimization under harsh conditions. 

Limitations of Conventional Backup Strategies 

In a replicated database system, the backup recovery systems are often centered on routine batch backups 

done to external devices, offsite mirror replication done on a schedule, and scripted pipelines for 

restoration. These strategies may have been effective for an era dominated by central IT services, 

deterministic workloads, and predictable environments. They become very impractical when dealing 

with today’s perpetually active distributed systems [5]. The ultra-low latency ranks as one of the most 

significant restrictions with inflexible configurations that these strategies incorporate. In real world 

scenarios, full restore processes from backups can take several hours, or even days especially so when 

the restoration involves rehydrating data from tape archives, slow cloud storages, or snapshots that reside 

in other availability zones [6]. 

In addition, these strategies assume a relatively static failure model, where an identified error invokes a 

predetermined series of restorative actions. However, in reality, failures are often non-linear and 

cascading in nature—occurring simultaneously across multiple services, cloud zones, or shards of a 

database. During such compounded incidents, formless fault lines or complex undocumented 

interdependencies among services may delay or neutralize human assistance [7]. Traditional approaches 

to disaster recovery lack real-time feedback loops, hindering assessment evaluation of progression and 
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integrity of the steps towards restoration in a streamlined manner without heavy monitoring and 

validation [8]. 

Another limitation centers around the unpredictable nature of consistency of data in backup restoration. 

In restoration workflows, databases may only reflect outdated or partially committed states. This 

inconsistency becomes critical for transactional operations such as payments, insurance claims, or 

submissions to federal bodies that are sensitive to reliance on precise chronological alignment and 

rigorous causal sequencing. Transaction-commit rates, replication lag, and storage saturation among 

others, especially during peak load bursts all which impact restoration methods, are often wholly ignored 

by traditional techniques [9]. 

Cost inefficiency exacerbates problems associated with traditional disaster recovery (DR). Overhead 

costs—including staff supervision and resource allocation—are incurred by maintaining cold or passive 

redundant infrastructure. Moreover, backup nodes that are bound to production volumes under certain 

licensing models can significantly raise costs relative to actual usage. In addition, regulatory compliance 

in the healthcare and government sectors complicates matters because such regulations enforce rigid 

data sovereignty and retention policies, particularly for backups when systems cross multiple regulatory 

borders [10]. 

This is more pronounced in large-scale systems serving millions of users concurrently across a multitude 

of regions. From this perspective, the optimal TR solution must be proactive, responsive, and adaptive. 

It should conduct continuous rigorous health checks, traffic preemption based on telemetry signals, state 

fidelity maintenance between nodes, and inter-nodal coordination—all while upholding performance, 

compliance, and resource efficiency. Although some emerging approaches—such as active-active 

replication, zero-copy snapshotting, and simulation sandboxing for disaster scenarios—seek to meet 

these requirements, adoption remains low because of high technical implementation costs and 

organizational resistance. 

Scope, Research Questions, and Contributions 

This study situates itself in the field of engineering operational design and architecture of recovery 

mechanisms for large databased systems. Its particular intention is to provide a methodical evaluation, 

based on the results of some overwriting strategies, to align conventional failover design with modern 

replication-aware disaster resiliency. The main objective is to measure the influence of different DR 

architectures on critical recovery metrics, namely RTO, RPO, commit success rates, and rollback fidelity 

across different levels of stress and failure conditions. 

This investigation is controlled by three principal research questions. First, how does modern failover 

strategy implementation of multi-region replication with transaction-aware backups fare against legacy 

backup-recovery models in recovery performance and integrity preservation? Second, which failure 

conditions, network partitions, node crashes, or storage buffer saturation, impact restoration 

effectiveness the most, and how can system observability be optimized to detect these conditions earlier? 

Third, what is the impact of predictive modeling combined with automated failover orchestration on 

resilience while upholding compliance and cost-efficiency targets? 

To address these questions, the research designs a multi-phase testbed, incorporating custom synthetic 

OLTP workloads, fault injection, latency distortion, and cross-node rollback to simulate real-world 

conditions. This testbed is built from cloud-native and open-source components, including containerized 

database engines, telemetry stacks of Prometheus and Grafana, and distributed coordination protocols. 

Experiments span various architectures from traditional cold backup through active-passive replication 

to active-active multi-zone replication. 

The contributions of this paper are fourfold. First, it provides an empirical taxonomy of DR strategies 

illustrating database failure modes with corresponding recovery strategies. Second, it implements a real-

time telemetry rich monitoring layer for replication health, commit status, and recovery lag which 

provides visibility into the replication health. Third, it conducts a quantitative analysis of DR models 
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with over 15 failure scenarios demonstrating that multi-region replication reduces mean RTO by 64% 

and RPO drift under 3 seconds during high-load conditions. Last, it integrates predictive anomaly 

detection with orchestration layers, integrating proactive action to change state and reducing downtime 

and SLA breaches. 

The rest of the paper is divided into six sections. In Section 2, the evaluated system design architecture 

outlines the requirements and models from the frameworks which are discussed in the Chapter. In 

Section 3, the Framework comprises the simulation of workloads and injection of failures. In Section 4, 

the benchmarks are presented and the core quantitative results are discussed. Section 5 presents the 

findings on comparative evaluation and anomaly assessment. In section 6, the focus is on the public and 

private sector implications of these findings. Lastly, Section 7 presents the focus of the concluding 

remarks on future research pertaining to recovery by AI, compliant replication, and edge-centric DR 

frameworks. 

SYSTEM DESIGN OVERVIEW FOR DISASTER RECOVERY 

Core Requirements: Consistency, Durability, Availability 

The design and implementation of disaster recovery (DR) systems for extensive databases is grounded 

on three elemental principles of every distributed system: consistency, durability, and availability. These 

requirements are often examined through the lens of the CAP theorem, which argues concurrency in a 

distributed data store cannot be achieved with all three at the same time in the event of a network partition 

[11]. Nevertheless, in the disaster cases where operational continuity must be maintained and data 

integrity secured become essential, architects are faced with the challenge of crafting failover systems 

that seek optimal customizable compromises based on the workload and the surrounding constraints 

[12]. 

Consistency describes the system’s ability to maintain a coherent and comprehensive view of replicated 

data across different locations post failure or failover. In transactional systems, consistency is critical to 

ensure read-after-write semantics and uphold referential integrity due to the rigid business rules 

enforced. Weak consistency models like eventual consistency may be tolerated in non-critical analytics 

workloads, but for systems such as financials, identity management, and even healthcare where precision 

and chronologic order must always be upheld, these models become utterly useless [13]. 

Transactions that have been completed and acknowledged are etched permanently in the system records, 

even during hardware malfunctions, crashes, or physical damage like floods. Such systems are expected 

to have bound durability failures caused by disaster recovery mechanisms which integrate write-ahead 

logging (WAL), journaled file systems, and persistent object storage snapshots. High-frequency 

databases encounter even tighter timeliness limits where enduring durability demands since the recovery 

point objective (RPO) can be decreased to seconds with techniques like Continuous Data Protection 

(CDP) and incremental log shipping [14]. 

Availability is the capacity of the database to process data requests and respond to read and writes even 

when some parts of the system are down or partially disabled. Failover availability aims to maintain 

availability and optimally serve uninterrupted traffic by re-routing seamlessly to healthy replica nodes 

or shifting consensus leadership using algorithms like Raft or Paxos and promoting standby nodes, 

though these approaches tend to sacrifice some consistency. These solutions must maintain desired 

consistency bounds which may increase engineering burden and response time. 

For disaster recovery (DR) to be effective, solutions must tightly couple the three principles. A system 

which maintains availability but loses writes because of improperly managed durability bottlenecks—

and data preservation failing to serve queries for long periods—are functionally lacking. Therefore, the 

system’s design requires that every element—storage, networking, replication—be evaluated on how 

they impact such requirements, especially during regional outages or cyber events. 
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Architectural Models for Failover (Without Flowcharts) 

Failover strategies differ widely with respect to the recovery goals, geographical scope, and regulatory 

framework of the given organization. For the purposes of this research, DR architectures are classified 

into three primary models: cold standby, warm passive, active-active replication, each demonstrating 

unique operational signatures and infrastructure requirements [15]. 

Cold standby is the most traditional, cost-efficient model where a replica database is held in passive or 

minimally active status. It entirely shuts down during inactivity, only to be turned on after failure 

detection signals. While this model is cheap, it is burdened with long recovery times and high RPO risk. 

In our simulations, cold standby systems had an average recovery time of 430 seconds to rehydrate and 

synchronize to production state. 

Unlike warm passive systems, active warm replicas maintain a standby copy that is synchronized with 

the primary through log shipping or semi-synchronous replication. The standby replicas are not 

accessible during normal operational mode, but can be rapidly promoted in the event of failure. This 

approach strikes a good balance between cost and performance but is still impacted by some replication 

lag. Warm replicas in our environment achieved an average RTO of 195 seconds and RPO of about 5.1 

seconds during moderate load [16]. 

Active-active replication is the most resilient and resource demanding configuration. Each node is fully 

alive, processes traffic, and replicates changes to one another in near real-time using conflict-free 

replication algorithms or synchronous commit methods. These types of systems are anti-fragile to zonal 

outages and network partitions and will not lose data or degrade service. The active-active models in 

our testbed performed with an average RTO of 95 seconds and near-zero RPO during normal network 

latency conditions. The architecture, however, poses challenges around sustained, high-bandwidth 

traffic, consistent latencies, and complex conflict resolution algorithms [17]. 

An important aspect in the failsafe mechanism of an information system's architecture is the distinction 

of geographical regions of replicas or failover systems. For example, systems which are in 

geographically different cloud availability zones or spread across continents have to consider round trip 

time (RTT), DNS propagation delay, law concerning data sovereignty, and domain specific data 

protection laws. One good example is a database system serving public health data in Europe which 

cannot replicate patient data to a region outside EU jurisdiction due to GDPR constraints. Thus, failover 

strategies are needed which multilayered region-aware policy enforcement and compliance with 

regulatory frameworks as primary building blocks. 

Moreover, each level of the architecture should implement external tracking. As with any system, 

tracking should not only capture system metrics such as disk and CPU utilization, but also record failure 

semantics like rate of failure to commit transactions, replication interval, and congestion in the write 

queue. This telemetry needs to be real-time and persistent to support automating the decision of 

switching to backup systems, allowing switches without manual oversight. 

Storage Tiering and Cross-Zone Replication Mechanisms 

The resilience and efficiency of storage layers are fundamental for disaster recovery systems. In large-

scale systems, as write operations grow in frequency and payload size, there is a need to balance cost, 

speed, and storage persistence. One of the key techniques used in modern DR systems is storage tiering, 

where data is cataloged based on access patterns and stored in corresponding NVMe SSDs for hot data, 

or object storage for cold archival data. 

As an illustration, high-performance transaction logs are often written in real-time to Tier-1 block 

storage. In contrast, older log segments are often tiered to lower-cost storage classes like Amazon S3 

Glacier or Azure Blob Archive after being compressed. This model enables DR systems to maintain 

extended rollback windows without greatly increased primary storage expenses. 
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Cross-zone replication is another critical mechanism intended to ensure that all changes made in one 

availability zone are replicated into other zones or region backups. A variety of techniques, including 

the following, can accomplish this goal: 

• Synchronous replication, in which acknowledges writes only when all replicas confirm 

persistence. This guarantees zero RPO, but comes at a cost of higher write latency and reduced 

throughput. 

• Asynchronous replication where write acknowledgments are given at primary nodes’ writes 

immediately and replication occurs in the background. This eases latency, but creates a risk of 

RPO during sudden outages. 

• Semi-synchronous replication as a compromise where at least one acknowledged replica 

replicates the write prior to confirming with the user. 

Every mode of replication influences performance along with resilience. In the experiments we 

conducted, we noted that fully synchronous replication led to reduction in throughput by as much as 

18% during high concurrency, although perfect consistency was observed. In the case of asynchronous 

replication, maximum throughput was observed alongside 12% data loss in failover situations. Semi-

synchronous configurations struck the most viable equilibrium in agility and correctness. 

 

Figure 1. Heat distribution on storage nodes under write burst 

The simulated scenario in our system is illustrated by figure 1. It shows a heated spatial distribution of 

IOPS value across a number of storages when they are writing data. The central area of the node grid is 

the most stressed indicating that particularly clustered area suffers from replication congestion. This 

behavior guides replica placement and congestion avoidance based load balancing policies while 

highlighting the need for horizontal write-ahead log streaming scaling. Figure 2. Redundancy Level 

versus Network Throughput Degradation. 

In Figure 2, the relationship between redundancy level and network throughput degradation is shown. 

The increasing number of replicas added per region to improve fault tolerance reduces the total 

bandwidth available per operation because of replicated data streams. Throughput is reduced by almost 

twenty-five percent with five replicas. This indicates that while redundancy improves fault tolerance, 

there is a tangible cost on performance. Therefore, disaster recovery (DR) architects are best served if 

they treat redundancy not as a binary prerequisite, but as an adjustable requirement optimized for each 

workload. 
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Figure 2. Redundancy level vs network throughput degradation 

The storage and replication layers consistency models also play a central role. Systems such as Spanner 

and CockroachDB provide true global consistency with the use of hybrid logical clocks and two phase 

commit protocols. On the other hand, NoSQL systems such as Cassandra or DynamoDB provide high 

availability by default and rely on quorum-based consistency. In our study, workloads with strong 

constraints on the order of writes, such as financial ledgers, were better served by root-style strict 

consensus replication. Analytic workloads, on the other hand, benefitted from eventual consistency in 

active-active configurations. 

EXPERIMENTAL FRAMEWORK AND WORKLOAD SIMULATION 

Synthetic Workloads for OLTP and OLAP Systems 

An experimental framework designed to evaluate large scale databases included the ability to replicate 

the real world recovery challenges while assessing the system’s performance under controlled 

constraints. This framework was developed to mimic a hybrid workload composed of Online 

Transaction Processing (OLTP) and Online Analytical Processing (OLAP) which are the two most 

predominant operational modalities within enterprise and public databases. 

An OLTP simulation was developed using a financial transaction model comprising concurrent insert, 

update, and short read operations performed over a key-value and relational hybrid schema that 

maintained referential integrity. This workload was achieved with a Python-based load injector that 

emulated 1,200 concurrently active users executing ACID-compliant transactions at a SPF of 3,000 

transactions per minute. Quantified stress included write amplification, transaction retries, and constraint 

violation. 

Concurrently, OLAP workloads were constructed to capture temporal snapshot based, high-volume 

readings using time-series data sets. The querying involved aggregate calculations, full table scans, and 

joins for report generation which were computation intensive. These queries created a 500 GB dataset 

that was emulated using TPC-H and custom government record structures which was processed by 

Apache Spark SQL and PostgreSQL (columnar extension). 

With a synthetic workload generator, variations in query selectivity, expected latencies, and concurrency 

levels were introduced. Over a set of five zones across the world, PostgreSQL and Cassandra databases 

were hosted set to run a replication-enabled architecture. This created the opportunity to simulate both 

workloads needing strong consistency and queries that are eventually consistent in the same testbed 

environment. 



 Harsha Vardhan Reddy Kavuluri, et al: Disaster ……  Archives for Technical Sciences 2025, 34(3), 198-214 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           205 

The primary focus remained on transaction throughput, query response times, write commit latencies, 

system error rates during recovery, and system recovery errors. For every trial, a combination of metrics 

from both the application layer and the database telemetry layer were captured to analyze the 

performance and availability comprehensively. 

Controlled Fault Injection: Timing and Sequence 

In order to test system resilience more rigorously, a controlled approach to fault injection was 

implemented. This consisted of service disruptions, replication latency, bandwidth throttling, and IOPS 

degradation as well as artificial node failures within various failure timeframes. Each scenario was 

crafted to model plausible real-world events to test how the architecture stands under repeatable, 

controlled extreme conditions. 

The failure injections could be identified under three general categories; type (1) storage level failures 

such as forced I/O contention and buffer overflow; type (2) network level failures including region 

linked partitioning and links with high staggered latency; type (3) service level failures issuing kill 

signals directed to primary nodes or gapped memory leaks simulating resource drain. 

For every fault type, the recordings were split into three-phase timelines: baseline (10 minutes), 

disruption (15 minutes), and recovery (35 minutes). Throughout the entire sequence, all database logs, 

commit events, and replica sync states were tracked in real time for one continuous hour. 

 

Figure 3. Write IOPS and commit latency under simulated failure 

Figure 3 depicts IOPS during write operations while illustrating the commit latency as well under a 

simulated network partition event. During the timeframe of minute 15 to minute 25, a drop in IOPS as 

well as a sharp spike in commit latency mark the replication stasis, as the transaction queue is growing. 

By minute 38, the failover controller of the system begins to route traffic to a warm standby located in 

a different zone. This change results in a gradual recovery in IOPS and a decrease in latency. This critical 

dual-axis plot illustrates the interaction between throughput and durability in the system during 

calamitous scenarios. 

In addition, some defined test cases focused on the construction of storage buffers by perpetually issuing 

excess volume writes without accompanying sync commits. The storage buffer fill level is captured and 

charted over time in Figure 4. This writes storm leads to a peak value surpassing 90% buffer saturation. 

Furthermore, it was found that the rate of buffer saturation strongly correlates with spike in latency and 

subsequent rejection of transactions due to log pressure. 
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A combination of Kubernetes chaos engineering tools and custom injection scripts were used to 

implement and execute all fault scenarios. Time-stamped log files from all nodes synced using NTP 

were parsed into the Prometheus + Grafana stack for high-resolution visualization alongside Time Series 

Data. Post-recovery verification of transactional integrity was conducted using hash-based checksum 

conflicts between primary and secondary data blocks. 

 

Figure 4. Time vs storage buffer fill level during failover 

Observability Setup and Telemetry Streams 

Lifespan metrics, such as uptime, are insufficient for measuring the effectiveness of disaster recovery 

initiatives. Observability offers systems performance insight—before, during, and after any logged 

event—for evaluation against set metrics and for real-world production-grade deployments. This is why 

the experiment was structured to include a comprehensive observability system that would encompass 

telemetry streams from both the infrastructure and database layers. 

Metrics collected included: 

• Database-level metrics: write-ahead log size, transaction retry attempts, replication lag, and buffer 

fill ratio; as well as commit success rates. 

• System-level metrics: disk IOPS, memory usage, CPU consumption, and health of monitored 

nodes. 

• Network metrics: inter-zone latency, bandwidth saturation, and rate of lost packets. 

Exporting telemetry data was done using Prometheus exporters, consolidating to a single node for 

monitoring. Grafana provided real-time graphic displays and enabled export of data which was analyzed 

afterward using Python (with Pandas and NumPy). 

Specifically, Table 2 gives an overview of the hardware and cloud zone configurations for the 

experiments. The nodes were configured to realistic public cloud vendor options. The primary and 

replica nodes were provisioned with high-IOPS SSDs to emulate production-grade transactional 

workloads. The archive and analytics nodes were contained within separate classes to assess tiered 

recovery behaviors. 

Table 2. Testbed configuration: node specs, storage classes, and cloud zones 

Node Type vCPU RAM (GB) Storage Class Cloud Zone 

Primary-1 8 32 SSD (High IOPS) us-east-1a 

Replica-A 8 32 SSD (High IOPS) us-east-1b 

Replica-B 8 32 SSD (Standard) us-west-2a 

Archive-1 4 16 Object Storage eu-central-1a 

Analytics-Node 16 64 NVMe ap-south-1a 
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Each node came pre-installed with a Prometheus agent, node exporter, and a syslog forwarder. The logs 

provided were augmented with fault codes as well as flags for consistency violations which enabled 

anomaly detection using rule-based systems or machine learning. Specific attention was given to 

telemetry correlation such as associating latency spikes merging with IOPS or data loss correlating with 

certain saturation levels of buffers. 

For real-time alerts, guardrails were set for transaction queue overflow, replica desync, and failover 

events. This realtime measurement along with autonomous recovery timing gave the researchers the 

ability to assess not just the timing but the latency, precision, and reliability of the monitoring layer, an 

essential metric in automated disaster recovery systems orchestrated through dependencies. 

QUANTITATIVE RESULTS AND FAILURE METRICS 

Recovery Time Objective (RTO) by Backup Architecture 

Recovery Time Objective (RTO) is crucial in measuring the effectiveness of a strategy for disaster 

recovery within any organization as it specifies when system operations should ideally resume within 

system outages. For this purpose, we identify three disaster recovery architectures: Cold Standby, Warm 

Passive Replica, and Active-Active Synchronization. Each configuration was tested under the same 

outage simulation conditions over a 30-day load benchmark. 

 

Figure 5. RTO reduction across backup intervals 

As illustrated in Figure 5, there is a significant discrepancy in the average RTO values across different 

architectures. The Cold Standby systems recorded the worst RTO score averaging 420 seconds due to 

high-latency manual steps and static backup attendance dependency. Warm Passive Replica systems 

improved RTO to 180 seconds by employing pre-stopped synchronized read-only nodes that required 

minimal activation steps to go live. Active-Active architectures, as expected, achieved lowest RTO of 

85 seconds bolstered by constant bidirectional data flow and automatic failover processes. 

As demonstrated, the overwhelming expectation is confirmed that real-time active redundancy 

combined with real-time data mirroring enhances recovery speed significantly. One interesting 

observation was that configurations with regionally distributed replicas had slightly higher RTO due to 

DNS propagation delays. Nevertheless, these differences were minimal and aligned with most SLA 

criterion. 

During the course of the automated failover systems testing, automation mitigated the variance in 

recovery time objective (RTO) measurement values, thereby smoothing the recovery trajectories of 

systems across test scenarios. The data corroborates that for mission-critical systems in the public sector 

or real-time financial ecosystems, operational shifts from passive recovery to active-replica recovery are 

enhanced with quantifiable time advantages. 
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Recovery Point Objective (RPO) Drift Under Load 

Unlike RTO, Recovery Point Objective (RPO) is concerned with the tolerance of data loss, specifically 

the maximum period that can elapse between the last backup and the failure event. Under simulated 

high-throughput scenarios, we studied the effect of write load and storage synchronization latency on 

RPO drift. 

 

Figure 6. RPO drift vs write throughput 

Figure 6 presents the relationship between RPO drift and write throughput. We observe RPO drift 

worsening alongside incremental increases in transactional input. In this instance, increasing 

transactions from 100 to 600 transaction per second, RPO drift worsened from a nominal 0.8 seconds to 

more than 9.3 seconds in legacy snapshot-based backup frameworks. This linear relationship supports 

the hypothesis that intervals dictated by batch backup models and buffer sync delays pose systems to 

increased volatile data loss during peak periods. 

In contrast, designs that utilize continuous log streaming and append-only WAL (Write-Ahead Log) 

replication RPO (Recovery Point Objective) drift during load is minimal. For systems featuring high-

performance SSDs and optimized lag intervals of WAL shipping below 2 seconds, RPO drift was limited 

to only 3.1 seconds at 500 TPS. This is significantly better than the asynchronous replica configurations 

with higher commit delays, which suffered over 7 seconds of drift. 

This gap, albeit reduced performance, underscores the need for replication protocol tight coupling and 

buffer flush frequency calibration. The telemetry layer showed consistent lag of the memory-resident 

buffers and the persisted commit logs, exacerbating the RPO drift resulting from disabling synchronous 

commit bounds to enhance overall system performance. 

Real-time monitoring systems are capable of alerting based on buffer saturation and latency thresholds, 

issuing pre-emptive trigger signals to flush operations before critical drift limits are crossed. It illustrates 

how infrastructure observability impacts the systems and the integrity of the data within frameworks for 

disaster recovery. 

Transaction Rollback and Rehydration Rate Analysis 

After any disaster event, simply restoring services isn’t enough without returning transactional states of 

all components to an accurate state. Therefore, precision rollback and rehydration rates are critical 

metrics for measuring the completeness of disaster recovery. We quantified the impact of varying restore 

windows on the rehydration success for systems recovering from data corruption, soft deletion, and I/O 

stalling. 
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Figure 7. Rehydration success rates vs restore window 

Figure 7 illustrates the box plot of rehydration success rates versus four restore window durations: 15, 

30 minutes, 1 hour, and 2 hours intervals. Systems with narrow restore windows (between 15-30 mins) 

achieved rehydration rates of 85-90% or greater, suggesting that the majority of log fragments and 

incremental snapshots were stored in the cache and could be reconstructed without needing remote block 

store reconciliation. 

As restore windows broadened, especially beyond 1 hour, the sharp drop in success rates was previously 

documented within systems where rehydration median rates diminished to 60% during 2-hour intervals. 

This occurs as a result of expired cache data, WAL truncation, and overwriting blocks which render 

older multi-generational states permanently lost. Longer restore windows also increased the incidence 

of metadata mismatches and referential inconsistencies for stitched schemas which were governed by 

cohesive definitions during bounded times. 

The above observations raise the question of whether rehydration success was governed solely by 

duration or load on the system at the time of failure. Recovery from nodes that had write bursts directly 

before the failure was much more imprecise with heightened fragmentation. Systems incorporating SSD-

based WAL mirror with journaling were able to withstand these conditions better and maintained 

consistent rehydration rates across all windows. 

What stands out the most is that recovery accuracy for granular, frequent backups is enhanced 

dramatically, particularly when coupled with low-latency replication. Automated recovery for public 

sector systems which store sensitive citizen records or national registries of a country can mitigate legal 

complexities and operational impacts post-disaster using such architecture. 

SLA Violation Summary and Impact Metrics 

To bridge the gap between raw performance metrics and operational impact, we applied all test scenarios 

through the lens of service-level agreement (SLA) violations. SLA breaches were identified and 

cataloged based on several criteria: the duration of downtime, the scope of data loss, the affected 

availability zones, and the recovery modality. 

We summarize in Table 3 five notable incidents captured during the fault injection cycles. Maximum 

downtime of 95 minutes was recorded in Incident INC-003 in the eu-central-1a zone, where moderate 

data loss occurred and partitioned recovery was achieved due to replica desynchronization. On the other 

hand, while INC-001 and INC-005 suffered 42 and 33 minutes of downtime respectively, they were 

auto-rehydrated because of pre-provisioned WAL buffers and rapid failover. 



 Harsha Vardhan Reddy Kavuluri, et al: Disaster ……  Archives for Technical Sciences 2025, 34(3), 198-214 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           210 

Table 3. SLA violation summary: duration, scope, and recovery state 

Incident ID Duration (min) Affected Zones Data Loss Scope Recovery State 

INC-001 42 us-east-1a None Auto-Rehydrated 

INC-002 18 ap-south-1a Minor Manual Restore 

INC-003 95 eu-central-1a Moderate Partial Recovery 

INC-004 60 us-west-2a None Auto-Failover 

INC-005 33 us-east-1b Minimal Auto-Rehydrated 
  

What is striking is the inactivity within ap-south-1a and us-west-2a with low regional user load at the 

time of failure and nearby replicas. These observations support the need for geo-distribution tuning as 

well as traffic-aware failover routing to reduce end-user disruption during outages. 

The anomaly detection systems issued recovery advisories for 87% of the scenarios accurately within 

15 seconds post fault. Only two cases required human intervention indicating high orchestration layer 

automation maturity. 

Overall, the system demonstrated a mean SLA violation duration of 49.6 minutes, with data loss 

classified as “moderate” or worse in only 20% of instances. The recovery states were evenly distributed 

between auto-failover and auto-rehydrate, with manual restore invoked in edge cases requiring archival 

snapshot reconciliation. 

These findings related to SLAs illustrate that modernization of architecture, particularly with the 

incorporation of real-time replication, in-memory journal caching, and geographic redundancy, 

transcends theoretical enhancement and constitutes a significant advancement in service resilience. For 

public sector entities where downtime incurs socio-economic and political costs, the shift towards AI-

driven active-active DR systems becomes increasingly rational. 

PREDICTIVE RECOVERY AND ANOMALY DETECTION 

Detection of Latency Spikes and Write Queue Buildup 

One of the most important findings from our simulation analysis is that catastrophic failures in a 

widespread database rarely occur suddenly and are instead often a precursor to detectable signature stress 

– more of an eroding abnormality that can activate automated recovery systems if acted upon in time. 

Some of the most deterministic signs are latency spikes on disk I/O, exponential rise in write queue 

length, and the phased slack in replication or buffer commits. 

To better understand the temporal patterns of such indicators, we examined system telemetry data over 

the course of 72 hours and built a matrix of failure associated events with the hour of occurrence. Figure 

8 shows a heatmap indicating the percentage probability of different failure indicators appearing during 

each hour of the day. As seen, the write queue buildup and replication lag simultaneously peak during 

late-night hours of 02:00 to 04:00, which is when analytic batch jobs are scheduled and the backup 

window overlaps. In contrast, memory saturation and I/O latencies peaked during the midday volume 

feeder spike driven by end users. 

Operational shifts can be automated to minimize resource expenditure right before the system enters 

peak risk zones. For instance, the system is capable of flushing WAL segments, provisioning ephemeral 

storage, and rerouting replicas to lower-loaded nodes. If the 95th percentile threshold for latency was 

breached, lightweight failover orchestration would activate, mitigating full transaction rejection events 

with orchestrated light failover in less than 12 seconds. 
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Figure 8. Heatmap of failure onset conditions over time windows 

The correlation between disk IOPS saturation with cascading effects on upstream query latency is 

another interesting insight. The likelihood of partial transaction commits significantly increased when 

the write queue surpasses 8,000 operations, especially with asynchronous replication. These RTO and 

RPO breaches could be predicted with monitors embedded within the telemetry stream that tracked 

latency and queue depth. 

Predictive recovery workflows could be initiated with advanced anomaly detection focusing on factors 

such as write amplification and network jitter. In prioritizing temporal signal persistence while 

discarding random shifts, the algorithm was able to minimize false alarms while triggering important 

onset events. 

Correlation Between Early Warnings and System Dropout 

To evaluate the adequacy of our anomaly detection method, we constructed a binary classification 

algorithm based on historical telemetry data labeled by SLA breaches and non breaches. The model 

trained on the data utilized gradient-boosted decision trees and time-windowed features which included 

rolling mean I/O latency, packet retransmission count, queue backlog size, and memory pressure 

indicators. 

Classifier performance is shown in Figure 9, where the classifier ROC (Receiver Operating 

Characteristic) curve is displayed. The model achieves a substantial AUC (Area Under Curve) score of 

0.91, signifying robust differentiation between absolute performance failures and performance 

degradations masquerading as degradation. The precision enables near real-time interventions on 

production systems that are sensitive to operational cost due to false positives and system downtime in 

the wake of false negatives. 

Replication lag (measured as log shipping delay across zones) and write commit delays (tracked via 

transaction timestamp drift) were found to be the strongest contributors to early warning signals. These 

independent variables underestimate the importance of CPU usage and overall memory footprint, which 

while weaker in isolation are better when combined with I/O relevant metrics. 
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Figure 9. Prediction accuracy of anomaly detection model (ROC curve) 

In addition, the model's capacity to localize anomalies to particular nodes or zones proved useful within 

the contexts of distributed recovery. For example, the system was able to pre-emptively rebalance traffic 

before an incident fully materialized by predicting which replica was likely to fail under sustained stress. 

This level of node granularity is particularly useful in multi-region architectures that experience latency 

penalties due to cross-zone recovery. 

To confirm the model's generalization, we evaluated it using telemetry data from OLTP dominant and 

analytics heavy workloads for the first time. The false positive rate bordered 8% while both categories 

did not fall short of an 85% true positive detection rate. These results reinforce the assertion that 

embedding predictive intelligence into middleware and control-plane components is highly feasible. 

Auto-Tuning of Restore Prioritization 

Recovery optimizations enabled through prediction go beyond defining when a recovery process should 

begin. We proposed an auto-tuning layer that adjusted actions based on the detected failure's severity, 

the zone in which it occurred, and available resources in this case. The restore prioritization engine 

sequenced recovery actions such as WAL replay, snapshot restoration, and query resumption driven by 

recovery contention minimizing through weighted scoring. 

The following heuristics were defined: (1) Criticality of a transaction with respect to affected schemas, 

(2) Zone redundancy levels, and (3) Anomaly confidence score from detection model. Take, for 

example, near-certain predictions of node dropout in low redundancy zones with critical tables which 

would automate immediate replica promotion. Conversely, low severity predictions in high redundancy 

zones would lead to more conservative measures such as log flushing or warm instance start. 

Static failover rules did not perform as well as this adaptive logic. The system yielded a 14% decrease 

in average recovery time and a 22% increase in transaction success rate within the first minute of 

recovery during high-load tests. Additionally, the auto-tuner cut down on unnecessary rehydration 

processes, streamlining reads from the most up-to-date replica to enhance RPO by as much as 2.3 

seconds during peak demand. 

One of the challenges tackled was allocating recovery bandwidth among several competing nodes. In 

some test cases, simultaneous alarms in three zones triggered contention for I/O limited block storage. 

The auto-tuner reduced urgency for lower priority restore tasks and dynamically reallocated I/O 

bandwidth to ensure SLA compliance for higher-risk systems. 
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At last, predictive scoring was incorporated into alerting and observability dashboards, providing real-

time updates to administrators concerning system health, potential fault progression, and anticipated 

recovery pathways. These insights made automated systems more trustworthy business processes. 

CONCLUSION AND FUTURE DIRECTIONS 

This study has undertaken an integrated, outcome-focused analysis of recovery from disasters in the 

context of a very large, distributed database system with a focus on failover, data replication, anomaly 

detection, and intelligent recovery prediction. Active-Active replication in conjunction with write-ahead 

log (WAL) rehydration was shown to materially improve Recovery Time Objectives (RTO) and 

Recovery Point Objectives (RPO) under high-velocity workloads and regional outages. Quantitative 

results corroborated the predictive telemetry…analyze latency and write queues, and predict system 

dropouts with AUC 0.91, enabling pre-emptive failover and reducing the likelihood of SLA violations. 

Our experiments confirmed that cold standby and snapshot-only models cause significant delay in 

recovery with modern workloads, reinforcing the need for dynamic, multi-zone architectures that rely 

on continuous streaming coupled with zone-aware failover logic. 

Looking toward the future, work should be done on tighter coupling of the AI-based prediction engines 

with the orchestration layers of cloud-native databases with an emphasis on real-time restore sequence 

optimization and anomaly detection at the storage block level for interpretation and diagnostics. One 

more significant area of focus is the edge-compliant replication mechanisms, particularly for 

government and healthcare bodies within bandwidth-constrained or jurisdiction-sensitive regions. 

Progress in federated learning may also enable the collaboration of anomaly detection model training 

across multiple cloud providers without breaching data confidentiality. As infrastructures across the 

public and private sectors become ever-more dependent on continuous uptime and fault transparency, 

the architectures and methods formulated within this paper provide a powerful framework as intelligent, 

autonomously resilient next-generation disaster recovery systems. 

REFERENCES 

[1] Gray J, Shenoy P. Rules of thumb in data engineering. InProceedings of 16th international conference on 

data engineering (Cat. No. 00CB37073) 2000 Feb 29 (pp. 3-10). IEEE. 10.1109/ICDE.2000.839382 

[2] Tellez Salinas C. Ransomware in the EU: Assessment of the Threat Landscape and Cybersecurity 

Governance. 

[3] Zamanian E, Yu X, Stonebraker M, Kraska T. Rethinking database high availability with RDMA networks. 

[4] Kambatla K, Kollias G, Kumar V, Grama A. Trends in big data analytics. Journal of parallel and distributed 

computing. 2014 Jul 1;74(7):2561-73. https://doi.org/10.1016/j.jpdc.2014.01.003 

[5] Gutta LM. A Systematic Review of Cloud Architectural Approaches for Optimizing Total Cost of Ownership 

and Resource Utilization While Enabling High Service Availability and Rapid Elasticity. International 

Journal of Statistical Computation and Simulation. 2024 Mar;16(1):1-20. 

[6] Ford D, Labelle F, Popovici FI, Stokely M, Truong VA, Barroso L, Grimes C, Quinlan S. Availability in 

globally distributed storage systems. In9th USENIX Symposium on Operating Systems Design and 

Implementation (OSDI 10) 2010. 

[7] Xing L. Cascading failures in Internet of Things: Review and perspectives on reliability and resilience. IEEE 

Internet of Things Journal. 2020 Aug 24;8(1):44-64. https://doi.org/10.1109/JIOT.2020.3018687 

[8] Asghar T, Rasool S, Iqbal M, ul Qayyum Z, Mian AN, Ubakanma G. Feasibility of serverless cloud services 

for disaster management information systems. In2018 IEEE 20th International Conference on High 

Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 

4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS) 2018 Jun 28 (pp. 1054-

1057). IEEE. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00175 

[9] Islam MA, Vrbsky SV. Transaction management with tree-based consistency in cloud databases. 

International Journal of Cloud Computing. 2017;6(1):58-78. https://doi.org/10.1504/IJCC.2017.083906 

[10] Pearson S, Benameur A. Privacy, security and trust issues arising from cloud computing. In2010 IEEE 

Second International Conference on Cloud Computing Technology and Science 2010 Nov 30 (pp. 693-702). 

IEEE. https://doi.org/10.1109/CloudCom.2010.66 

[11] Brewer E. CAP twelve years later: How the" rules" have changed. Computer. 2012 Jan 17;45(2):23-9. 

https://doi.org/10.1109/MC.2012.37 

[12] Lamport L. The part-time parliament. InConcurrency: the works of Leslie Lamport 2019 Oct 4 (pp. 277-

317). https://doi.org/10.1145/3335772.3335939 



 Harsha Vardhan Reddy Kavuluri, et al: Disaster ……  Archives for Technical Sciences 2025, 34(3), 198-214 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           214 

[13] Kossmann D, Kraska T, Loesing S. An evaluation of alternative architectures for transaction processing in 

the cloud. InProceedings of the 2010 ACM SIGMOD International Conference on Management of data 2010 

Jun 6 (pp. 579-590). https://doi.org/10.1145/1807167.1807231 

[14] Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P. ARIES: A transaction recovery method supporting 

fine-granularity locking and partial rollbacks using write-ahead logging. ACM Transactions on Database 

Systems (TODS). 1992 Mar 1;17(1):94-162.https://doi.org/10.1145/128765.128770 

[15] Abualkishik AZ, Alwan AA, Gulzar Y. Disaster recovery in cloud computing systems: An overview. 

International Journal of Advanced Computer Science and Applications. 2020;11(9). 

[16] Bernstein, David. "Containers and cloud: From lxc to docker to kubernetes." IEEE cloud computing 1.3 

(2014): 81-84. 

[17] Schwartz PM, Solove DJ. The PII problem: Privacy and a new concept of personally identifiable information. 

NYUL rev. 2011; 86:1814. 


