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SUMMARY 

The speed of the electronic healthcare system, clinical information system, and biomedical sensing 

technologies has resulted in the creation of extremely huge high-dimensional and heterogeneous medical 

data. Such data have substantial potential to automatically diagnose diseases, but are difficult to use 

because they are feature redundant, nonlinear, these models are often scalable and result in a limited 

interpretability of many existing models. Traditional machine learning (ML) techniques are based on 

manually designed features and do not always scale to high-dimensional inputs, whereas the deep learning 

(DL) ones, despite their mightiness, usually demand large annotated datasets and heavy computational 

resources. The proposed paper aims to suggest a hybrid architecture of ML and DL based on automated 

medical diagnosis on high-dimensional clinical and biomedical data, where deep learning based on 

representation learning is used together with effective classical classifiers. It consists of preprocessing 

(normalization, filling in of missing values, dimensionality reduction) and deep feature embedding with 

a hierarchical neural network and classification with optimized ML models. The proposed hybrid 

framework has an accuracy of 93.7, precision of 93.2, recall of 92.8, F1- score of 93.0 and AUC-ROC of 
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0.96, which is 3.4 to 7.3 percentage points better than standalone ML and DL models. These findings 

show that the hybrid design is better in diagnostic performance with less complexity of inference and 

scalability. The proposed system is thus seen to provide a viable and strong solution to smart e-health 

applications that aid in the credible automation of medical diagnosis and decision support in intelligent 

healthcare settings. 

Key words: hybrid learning, medical diagnosis, deep learning, machine learning, biomedical data, 

intelligent healthcare systems. 

INTRODUCTION 

Recent developments in electronic healthcare systems, biomedical sensors, and clinical information 

infrastructures have led to an unimaginable increase in the quantity, speed, and size of medical 

information. Clinical and biomedical data in high-dimensional forms, which include electronic health 

records (EHRs), physiological measurements, laboratory results, and features based on imaging, are 

valuable sources of information in disease diagnosis and clinical decision support. Nevertheless, the 

successful utilization of this data is still an important problem because of the redundancy of features, 

noise, and missing values, and nonlinear correlations between heterogeneous variables of the data [1], 

[2]. Such difficulties do not make it easy to develop robust and scalable automated diagnostic solutions 

for intelligent healthcare applications. Automated medical diagnosis has been highly applied using 

traditional machine learning (ML) methods, such as the support vector machine, decision tree, and k-

nearest neighbors, as well as ensemble classifiers due to their relative simplicity and interpretability 

[3][4]. However, these methods are highly dependent on human-crafted feature engineering and assumed 

background knowledge, which is ineffective and vulnerable to large-scale, high-dimensional biomedical 

information. Additionally, they tend to deteriorate when subjected to complicated nonlinear structures 

and irregular data collections. Deep learning (DL) models have become an effective alternative as they 

allow automatic hierarchical feature learning from raw data. Neural networks, convolutional and 

recurrent neural networks, have shown impressive capability in the action of medical image analysis and 

biomedical signal processing measures [5][6]. Nevertheless, despite all these achievements, deep 

learning models tend to consume large amounts of annotated data, they have high computational and 

memory demands, and have low interpretability aspects, which limit their application to real-life 

electronic health infrastructure utilizing systems and resource-constrained environments [7]. The current 

literature is either standalone ML-based models or pure diagnostic models based on DL. These methods 

do not provide a single system that combines high-dimensional features learning, computational 

efficiency, and robustness of the decision. Specifically, numerous publications fail to leverage both 

systems appropriately due to their use of each other, and they lack an adequate system-level analysis 

and scalability study in line with smart electronic healthcare systems [8][9]. This disparity spurs the 

desire to have hybrid learning archetypes that will strike a balance between the learning ability of 

representation, efficiency, and interpretability. 

In that regard, this paper teaches to unify the hybrid machine and deep learning infrastructure for 

automatic medical diagnosis with high-dimensional clinical and biomedical information. The suggested 

system combines feature extraction, performed with deep learning, and classification, performed with 

machine learning, to enable effective learning of representations and, at the same time, ensure strong 

and understandable decision-making. Intensive experimentation and performance studies are done to 

prove the efficiency and scalability of the proposed solution to intelligent electronic healthcare 

applications. 

The general contributions of this work may be summarized as follows: 

• Encountering difficulties in combining machine learning and deep learning architecture in 

automatic medical diagnosis. 

• Deep learning with machine learning-based classification to integrate deep representation with 

machine learning in order to be effective in testing high-dimensional biomedical data. 



Komal Saxena, et al: A hybrid machine learning ……  Archives for Technical Sciences 2025, 34(3), 965-977 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           967 

• It should include extensive experimental validation of the benefits over individual use of ML and 

DL. 

• Computation efficiency and scalability analysis point to the system being suitable for developing 

intelligent electronic health care. 

The rest of this paper is structured in the following way. In section 2, the related work on ML-, DL-, and 

hybrid-based medical diagnosis is reviewed. Section 3 outlines the suggested hybrid architecture, which 

comprises preprocessing, deep feature extraction, and ML-based classification. Section 4 explains the 

experimental design, dataset, measures of evaluation, and implementation. The results, including 

ablation and complexity studies, are introduced and discussed in Section 5. Section 6 should be the end 

of the paper, which explains the limitations and future research directions. 

RELATED WORK 

Automated medical diagnosis has been a field of prolific research because of the growing access to 

digitized clinical and biomedical information. Early researchers mainly used the existing machine 

learning methods like support vector machines, k- nearest neighbors, decision trees, and models based 

on ensembles to classify diseases and support clinical decision-making. These methods showed good 

outcomes when applied on structured and low dimensional data due to their simplicity and 

interpretability [11][12]. Nevertheless, handcrafted feature extraction and prior domain knowledge play 

a great role in their workability, and thus, they are not applicable to high-dimensional heterogeneous 

biomedical data. Increased medical datasets size and complexity elements tend to affect traditional 

machine learning models with respect to poor performance, high computational cost, and no or reduced 

generalization [13]. In order to break these restrictions, deep learning models have been extensively 

implemented in the analysis of biomedical data. Convolutional neural networks, recurrent neural 

networks, and autoencoders have performed state-of-the-art in medical imaging, physiological signal 

processing, and electronic health record analysis on their own with hierarchical feature representation 

of raw data learnt automatically [14][15][16]. Although the deep learning models generally possess 

higher representational capacity, they usually demand huge labeled datasets, massive computational 

resources, and time-consuming training. Additionally, their opaque character and inability to be 

interpreted cause major issues with respect to their deployment in safety-critical healthcare settings and 

resource-heavy electronic systems [10]. Hybrid machine learning and deep learning paradigms have 

been suggested more recently as an attempt to make use of the complementary differences of the two 

paradigms [17]. In those models, the deep learning networks are often utilized to extract the features, 

whereas the standard machine-learning classifiers are utilized to make the final decisions with the aim 

of increasing the efficiency and interpretability [7][8][18][19][20]. Despite the reportedly better 

diagnostic accuracy of these hybrid means, most of the available literature suggests the main emphasis 

on the performance enhancement without offering a single architectural framework or system-level 

assessment. Moreover, some of the problems associated with scalability, computational complexity, and 

resilience in high-dimensional clinical settings are not adequately tackled [21][22]. These shortcomings 

point to the necessity of factorized and scaled hybrid systems that combine deep representation learning 

with efficient machine learning classifiers and put into focus system design and practical deployment 

issues. The given work confronts these challenges with the proposal and assessment of a hybrid unified 

ML-DL architecture, which is designed to face the high-dimensional clinical and biomedical data. 

With these developments, there are still a number of gaps. Most hybrid systems are specific to disease 

or specific modality, do not offer a common architecture, and offer little with regard to scalability, 

computational cost, and deployment viability in electronic healthcare. In addition, interpretability and 

integration with clinical workflows tend to be considered as secondary issues. The paper fills in these 

gaps through the description of a single, modular hybrid ML DL architecture, systematically analyzing 

its diagnostic capabilities, computational efficiency, and original interpretability characteristics on high-

dimensional clinical and biomedical data. 
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PROPOSED HYBRID ARCHITECTURE 

This part outlines the target hybrid machine learning and deep learning model that was designed to be 

used in the process of automated medical diagnosis based on high-dimensional clinical and biomedical 

data. The methodology will be done in a systematic manner to handle challenges associated with data 

heterogeneity, redundancy, nonlinear relationships, and efficiency of computation. The proposed 

method combines deep representation learning with efficient machine learning-based decision models 

to attain powerful and scalable diagnostic performance that is appropriate to intelligent electronic 

healthcare systems. 

System Overview 

The design of the hybrid architecture is based on a modular and sequential processing pipeline that 

includes data acquisition, preprocessing, and dimensionality reduction, feature extraction using deep 

learning, and classification using machine learning. As shown in Figure 1, preprocessing comes before 

high-dimensional clinical and biomedical data are standardized and made consistent and reliable using 

electronic health records, biomedical sensors, or diagnostic measurements. The learned information is 

then provided in a succinct feature manifestation through a deep learning architecture that has the 

capability of achieving the intricate nonlinear trends. The resulting learned feature embeddings are then 

the inputs to a machine learning classifier, which makes automated diagnostic decisions. This 

architecture will be developed such that it is not required to couple representation learning with 

classification and will allow it more flexibility, interpretability, and computational efficiency. 

 

Figure 1. Schematic representation of the proposed hybrid machine learning and deep learning architecture for 

automated medical diagnosis 

A schematic depiction of the final processes of end-to-end flow of high-dimensional clinical and 

biomedical data processing, consisting of preprocessing, deep feature extraction, machine learning 

inference classification, and diagnostic decision support. 

Data Preprocessing and Dimensionality Reduction 

The clinical and biomedical data may include noise, gap values, redundant data, and scale differences 

because there are many different sources of data. The raw data are processed into a structured form in a 

preprocessing stage to overcome these problems. This includes normalization of data to achieve similar 

feature scaling, imputation methods to address any missing or incomplete values, and noise removal to 

mitigate artifacts in measurements. After preprocessing, dimensionality reduction is used in order to 

alleviate the curse of dimensionality and lower the cost of computation. Methods like principal 

component analysis or compression based on autoencoders are used in order to preserve the most 

informative features and get rid of redundancy. The idea behind this step is to improve the model stability 

and accelerate the training and the overall performance in terms of generalization in high-dimensional 

diagnostic problems. 
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Deep Learning-Based Feature Extraction 

The biomedical data is subjected to preprocessing and dimensionality reduction, followed by a deep 

learning model that is used to provide high-level feature representations. Deep network is capable of 

learning hierarchical and nonlinear relations, which may be hard to notice by traditional feature 

engineering methods. The model is able to produce compact and discriminative feature embeddings 

through various stages of nonlinear transformations that generalize complex biomedical patterns that are 

useful in disease diagnosis. Such learned representations act as an intermediate representation space that 

has a tradeoff of expressiveness and dimensional efficiency that beats downstream classification. A deep 

neural network (DNN) is used as a feature extraction block in the suggested hybrid architecture. The 

network comprises an input layer in the dimension of reduced features, followed by the three fully 

connected hidden layers with 256, 128, and 64 neurons, respectively. All the hidden layers employ the 

Rectified Linear Unit (ReLU) activation functions to provide nonlinearity and improve representation 

learning. The overfitting is reduced by the application of a dropout rate of 0.3. The final hidden layer 

output is a compressive deep feature embedding that is a high-level and discriminative biomedical 

pattern of the data. This embedding is not utilized directly in classification; rather, it is an intermediate 

representation that is afterward utilized in decision making utilizing machine learning. 

Deep Feature Extraction Mapping 

𝑒 = 𝑓𝜃((𝑅(𝑥̃))                                                  (1) 

This equation (1) defines the deep feature extraction step, where the preprocessed and dimensionally 

reduced input 𝑅(𝑥̃) is mapped by the deep neural network 𝑓𝜃(⋅) to a compact embedding 𝑒 ∈ ℝ𝑘.  

Final Hybrid Decision Function 

𝑦̂ = 𝑔 (𝑓𝜃(𝑅(𝑥̃)))                                        (2) 

This equation (2) represents the complete hybrid model, where the machine learning classifier 𝑔(⋅) (e.g., 

SVM or RF) receives the deep embedding 𝑓𝜃(𝑅(𝑥̃)) and outputs the predicted class label 𝑦̂.  

Machine Learning-Based Classification 

Deep feature embeddings that are extracted are then presented as inputs to a machine learning classifier 

whose duties are to make diagnostic decisions automatically. The use of classical machine learning 

algorithms like support vector machines or random forest classifiers is attributed to their resilience, 

interpretability, and usefulness when working with small feature spaces. The proposed hybrid 

architecture allows exploiting the advantages of deep learning in representation learning, but in addition 

to that, the stability and lower cost of decision models of machine learning are preserved by separating 

feature learning and classification. The combination leads to a higher diagnostic accuracy and a superior 

adaptability of the various biomedical datasets. Deep module Deep learning classifiers are used to 

generate deep feature embeddings, which are used by classical machine learning classifiers to perform 

diagnostic decision-making. A Support Vector Machine (SVM) with a radial basis function (RBF) kernel 

and a Random Forest (RF) classifier has been utilized in this paper in order to compare the results of 

classification. The SVM classifier is chosen due to its ability to generalize well in high-dimensional 

feature space, whereas the Random Forest classifier is strong in terms of its robustness and 

interpretability capabilities by using the ensemble method. Distinct hyperparameters, such as the penalty 

parameter and the width of the kernels being used in the SVM and the number of trees and the maximum 

depth in the RF, are optimized via cross-validation. The best performing classifier in terms of its 

validation performance is selected to be evaluated finally. 

Training Strategy and Optimization 

The hybrid architecture involves using a systematic approach to the training process to achieve reliable 

performance and generalization. Figure 2 shows that the deep learning feature extractor and machine 
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learning classifier are trained with partitioned datasets on a cross-validation scheme to avoid overfitting 

and bias. Hyperparameter optimization is done to maximize the network depth, learning rates, and 

parameters of classifiers so that the performance in the diagnostic classes is balanced. The optimization 

methods are used to enhance the stability of convergence and classification robustness. The general 

training approach is intended to implement a trade-off among precision, cost-effectiveness, and scale, 

and causes the advanced system to be applicable in smart electronic healthcare setups. The training 

process is two stages. Deep learning feature extractor. Firstly, the deep learning feature extractor is 

trained on the training subset to learn powerful feature representations. It is after converged training that 

deep network parameters are fixed and deep feature embeddings are extracted across all the samples. 

The second stage involves training deep learning classifiers independently using the extracted deep 

features. This modular training approach allows convergent stability, minimal computation load, and 

allows replacement flexibility of classifiers without retraining the deep feature extractor. 

 

Figure 2. Training strategy and optimization workflow for the proposed hybrid machine learning and deep learning 

architecture 

Graphical representation of the dataset partitioning, cross-validation, hyperparameter optimization, and parallel 

optimization of deep learning and machine learning models in the suggested hybrid framework. 

Algorithm 1: Hybrid ML–DL Architecture for Automated Medical Diagnosis 

Input: 

    X_raw  : Raw clinical and biomedical data (N samples, D features) 

    y      : Class labels for each sample (N labels, C classes) 

Output: 

    Trained deep feature extractor f_θ 

    Trained ML classifier g 

    Performance metrics: Accuracy, Precision, Recall, F1-score, AUC–ROC 

# STEP 1 – DATA PREPROCESSING 

Remove samples with missing diagnostic labels from (X_raw, y) 

For each feature j in {1, …, D} do 

    Impute missing values in feature j (e.g., mean imputation) 

    Standardize feature j using z-score normalization 

end for 

X_pre ← preprocessed data 

Train 

Test 

Valid 

 

Dataset Partitioning 

Dataset Partitioning 

Cross-Validation 

Cross-Validation Hyperparameter Tuning 

Machine Learning 

SVM 

Training & 

Optimization 

Progress 



Komal Saxena, et al: A hybrid machine learning ……  Archives for Technical Sciences 2025, 34(3), 965-977 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           971 

# STEP 2 – DIMENSIONALITY REDUCTION 

Fit dimensionality reduction method R(·) (e.g., PCA or autoencoder) on X_pre 

Z ← R(X_pre)        # Z has dimension d << D 

# STEP 3 – DATA SPLITTING 

Split (Z, y) into train (70%), validation (15%), test (15%) using stratified sampling 

(Z_train, y_train), (Z_val, y_val), (Z_test, y_test) ← stratified_split(Z, y) 

# STEP 4 – TRAIN DEEP FEATURE EXTRACTOR 

Initialize deep neural network f_θ with layers [d → 256 → 128 → 64] 

while not converged do 

    Sample mini-batch (Z_b, y_b) from (Z_train, y_train) 

    Compute embeddings e_b = f_θ(Z_b) 

    Compute cross-entropy loss L_DL on (e_b, y_b) using temporary softmax head 

    Update θ using backpropagation and optimizer (e.g., Adam) 

end while 

Freeze θ 

Compute deep embeddings: 

    E_train = f_θ(Z_train) 

    E_val   = f_θ(Z_val) 

    E_test  = f_θ(Z_test) 

# STEP 5 – TRAIN ML CLASSIFIER ON DEEP EMBEDDINGS 

Define hyperparameter grids for SVM (C, γ) and RF (n_trees, max_depth) 

best_score ← −∞ 

best_model ← None 

for each candidate classifier g_candidate in {SVM, RF} do 

    for each hyperparameter setting h in grid(g_candidate) do 

        Train g_candidate(h) on (E_train, y_train) using k-fold cross-validation 

        Compute validation score score(h) (e.g., mean F1-score) 

        if score(h) > best_score then 

            best_score ← score(h) 
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            best_model ← (g_candidate, h) 

        end if 

    end for 

end for 

Train final classifier g using best_model on (E_train ∪ E_val, y_train ∪ y_val) 

# STEP 6 – TESTING AND EVALUATION 

y_pred_prob ← g.predict_proba(E_test) 

y_pred      ← g.predict(E_test) 

Compute the confusion matrix to obtain TP, TN, FP, FN (per class) 

Compute Accuracy, Precision, Recall, F1-score using Equations (1)–(4) 

Compute AUC–ROC from y_pred_prob and y_test (macro or weighted) 

Return f_θ, g, and all performance metrics 

Algorithm 1 outlines the entire hybrid machine learning and deep learning pipeline of automated medical 

diagnosis of high-dimensional clinical and biomedical data. It begins with cleaning and normalization 

of raw clinical and biomedical records, and then dimensionality reduction to come up with small feature 

vectors to be used in efficient learning. A deep neural network is then trained to convert these reduced 

features into deep discriminating embeddings that represent complex nonlinear correlations in the data. 

Over these embeddings, the classical machine learning classifiers, including support vector machines 

and random forests, are trained using cross-validation to lead to a diagnosis decision that is robust. 

Lastly, the trained hybrid model is tested on a separate test set with regard to accuracy, precision, recall, 

F1-score, and AUC-ROC, which provides a stringent measure of predictive and practical applicability 

of the hybrid model to intelligent e-healthcare applications. 

EXPERIMENTAL SETUP 

In order to assess the efficiency and the strength of the suggested hybrid machine learning and deep 

learning architecture, detailed experimental research is performed with the help of high-dimensional 

clinical and biomedical data. The experimental design is designed in such a way that it is able to compare 

fairly, reproducibly and reliably and evaluate the performance of generalization. 

Dataset Description 

The publicly available UCI Thyroid Disease dataset is conducted in the form of experiments, and is used 

in the automated medical diagnosis research. The data set of size N=3772 patients, with C=3 diagnostic 

categories (hyperthyroid, hypothyroid, and normal) are defined by initially having D=21 clinical and 

laboratory variables. These characteristics are heterogeneous clinical parameters such as demographic 

data (e.g., age), laboratory measurements of thyroid-functions (e.g., TSH, T3, TT4) and other results of 

examination. Sample samples that lack diagnostic labels or have drastically bad records are not included 

so as to retain the integrity of the data. The dataset has moderate class imbalance with the normal class 

more common than the abnormal classes which are realistic in clinical distributions, thus the dataset can 

be used as an ideal test to test intelligent diagnostic architectures. 
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Parameter Initialization 

During implementation, all fully connected layers of the deep neural network are initialized via He 

(Kaiming) initialization, i.e., sampled by a zero-mean Gaussian distribution with variance 2/𝑛in, and all 

the biases of the deep neural network are initialized to zero to achieve stable training with ReLU 

activations. In the case of the SVM classifier with RBF kernel, the penalty parameter C is searched in 

(0.1,1,10,100) and the width of the kernel g in {10−3, 10−2, 10−1, 1} and in the case of the Random 

Forest classifier, the number of trees is searched in (100, 200, 300) and the maximum depth in (5, 10, 

15, none), where the best cross-validation performance determines the final values. 

Preprocessing and Data Preparation 

Before the model is trained, there is a standardized preprocessing pipeline of all the data. Numerical 

attributes that contain missing values are imputed with mean encouragement, which causes minimal 

distortion of features distributions. The z-score normalization of features is done to normalize all features 

to mean zero and unit variance and this is necessary in order to have a stable deep learning training and 

equitable machine learning classification. Dimensionality reduction techniques as detailed in Section 3 

help to reduce noise and unnecessary information after which a feature representation that is easy to 

understand and informative enough are arrived at to proceed with downstream learning. 

Data Splitting and Validation Strategy 

The licenses are divided into training (70 percent), validation (15 percent), and testing (15 percent) 

subsets through a stratified sampling approach to maintain the same amount of classes in all the subsets. 

Model parameters are learned using the training set but hyperparameter tuning and model selection is 

performed using the validation set. Moreover, a five-fold stratified cross-validation design is utilized on 

the training data to increase power further and avoid the problem of overfitting even further. Independent 

test set is applied with the sole aim of final performance evaluation addressing the overall condition of 

the capability to generalize the proposed architecture. 

Performance Evaluation Metrics 

The performance of models is measured against the generally accepted measures of classification, such 

as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve 

(AUC–ROC). All of these metrics offer a holistic evaluation of the general diagnostic accuracy, 

discrimination by class, and strength of the discrimination, especially under a condition of class 

imbalance as it is typical of medical data. The overall classification correctness is measured by accuracy 

and the reliability and sensitivity of a diagnostic prediction are measured by precision and recall. F1-

score is the score that indicates the balance between precision and recall and AUCROC is the score that 

identifies the model that possesses the ability to make decisions at different decision thresholds. 

For a given class in a binary or one-vs-rest setting, let true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) be defined as usual. Then: 

Accuracy 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
         (3) 

Equation (3) measures the overall proportion of correctly classified samples (both positive and negative) 

among all samples. 

Precision 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                  (4) 
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Equation (4) measures how many predicted positive cases are actually positive, i.e., it quantifies the 

reliability of positive predictions. 

Recall 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                     (5) 

Equation (5) measures how many actual positive cases are correctly identified by the model. 

F1-score 

𝐹1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall
                      (6) 

The equation (6) F1-score is the harmonic mean of precision and recall, providing a single measure that 

balances both, especially useful under class imbalance. 

Implementation and Computing Environment 

All tests are made with the help of Python 3.x. The feature extraction module of deep learning is 

customized with the help of the TensorFlow, and the machine learning classifiers are carried out with 

the help of the scikit-learn library. Experimental analyses are conducted using a computer platform with 

the Intel Core i7 processor, having 16GB RAM and having the support of a GPU where necessary. All 

comparative models have constant random seeds, unchanging software environments and same 

experiment circumstances to make sure that results are reproducible and performance is fairly assessed. 

To prove that the proposed hybrid architecture is more beneficial in relation to independent machine 

learning and deep learning, the latter is compared and performance metrics are run under the same 

conditions. 

RESULTS AND DISCUSSION 

Experimental assessment of the benchmark biomedical dataset stated in Section 4 provides the 

quantitative results presented in this section. All performance values in Table 1 are obtained by using 

predictions that are obtained on the independent test set and the ROC curves in Figure 3 are obtained by 

class probability results of the assessed models. The results presented are real replicas of experimental 

executions under the mentioned training, validation, and testing environments. 

To show how successful the proposed hybrid architecture is, a comparison of performance is made in 

relation to three baseline configurations as follows: (i) standalone machine learning models trained 

directly on reduced biomedical features, (ii) a standalone deep learning model with an end-to-end 

softmax classification layer, and (iii) the proposed hybrid model of deep learning-based feature 

extraction and machine learning-based classification. The evaluation of all the baseline models will be 

done at the same experimental conditions to perform fair and unbiased comparison. The main purpose 

of such evaluation is to evaluate the accuracy of diagnostic decisions, their strength, and computational 

efficiency in processing high-dimensional clinical and biomedical data. 

Standard classification metrics are used to quantitatively assess the performance of the proposed hybrid 

architecture, which include accuracy, precision, recall, F1-score, and the area under the receiver 

operating characteristic curve (AUC -ROC). The proposed hybrid model is always more accurate and 

has a higher F1-score than machine learning-only and deep learning-only models as summarized by 

Table 1. These advances prove the efficiency of combining deep representation learning with effective 

machine-based decision mechanisms or algorithms. Specifically, the mentioned increase in F1-score 

implies the enhancing of the balance between precision and recall which is vital when using medical 

diagnostic models where the class imbalance has been a common occurrence. 

The application of graphs to compare the performance as indicated in Figure 3 further demonstrates that 

the suggested method is better. ROC curves show that the hybrid architecture attains better values of 

AUCs over different considered configurations, which reflects a higher-class separability and a solid 
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workability against diverse levels of decision thresholds. These findings support the fact that the use of 

deep learning-based feature extraction improves the discriminatory power of the learned feature space, 

whereas the machine learning classifier is able to utilize the representations appropriately and 

dependably to make diagnostic decisions. 

Ablation Study 

To examine the role of the individual elements in the proposed hybrid architecture further, ablation study 

is carried out by estimating three model configurations in the same experimental conditions. The former 

setting includes independent machine learning classifiers that are trained on reduced biomedical features 

without deep representation learning. In the second setup, a standalone deep learning-based model that 

uses an end-to-end softmax classification layer is used. The third set will be the hybrid configuration 

where only deep learning will apply in extracting the features after which the classification will then be 

done using machine learning. 

The results of the ablation show that standalone machine learning models have lower performance 

because they can only use reduced or handcrafted feature representations, whereas standalone deep 

learning models have better accuracy because they require more computational complexity and have 

lower interpretability. Conversely, the suggested hybrid designs is always better than the two baselines 

through discriminative deep feature embeddings and effective machine learning classifiers. These results 

prove that the effectiveness of the offered system corresponds to the successful combination of the deep 

learning-based representation learning and the machine learning-based decision mechanisms. 

Computational Complexity and Runtime Analysis 

Besides diagnostic performance, computational efficiency is being evaluated in order to determine the 

real-life applicability of the suggested architecture in electronic healthcare. All of the evaluated 

configurations are considered in terms of training time, inference time per sample, and the complexity 

of the model. The proposed hybrid architecture has lower inference latency by relying on small deep 

feature embeddings and small machine learning classifier compared to standalone deep learning models. 

Despite the fact that the deep learning scissor extractor inserts the initial compute cost when training, 

the cost is only incurred once. The extraction of features, as well as classification, is an efficient process 

that minimizes inference time and minimizes memory overhead in contrast to end-to-end deep learning 

models after training. Such a modular format allows to balance diagnostic and computational efficiency 

in a desirable way, making the presented hybrid architecture applicable to the implementation into the 

resource-constrained or real time electronic healthcare setting. 

Interpretability Considerations 

Medical decision-support systems have an important requirement of interpretability. Although the main 

target of the given study is the performance of diagnostic and the efficiency of the system, the application 

of machine learning classifiers within the framework of the offered hybrid architecture allows using the 

features of interpretability of the features at the feature-level by analyzing the feature importances. Also, 

the design of the proposed system as a modular object allows incorporating explainable artificial 

intelligence techniques, such as SHAP and LIME, in the future to deliver a clear understanding of model 

predictions and increase clinical trust. 

In general, the results and analyses of the experiment confirm the suggested hybrid machine learning 

and deep learning architecture as the effective, efficient, and scalable method of automated medical 

diagnosis based on high-dimensional clinical and biomedical data. 

The Figure 3 receiver operating characteristic (ROC) curves that are used to show the diagnostic 

functionality of individual machine learning models, a deep learning model, and the proposed hybrid 

ML-DL framework, where the hybrid model exhibits a better capability to discriminate between classes. 
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Table 1. Performance comparison of machine learning, deep learning, and proposed hybrid architectures 

Model Architecture 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC–

ROC 

Support Vector Machine 

(SVM) 
86.4 85.9 84.7 85.3 0.89 

Random Forest (RF) 88.1 87.6 86.9 87.2 0.91 

Deep Learning Model (DL) 90.3 89.8 90.1 89.9 0.93 

Proposed Hybrid ML–DL 

Architecture 
93.7 93.2 92.8 93.0 0.96 

 

Figure 3. ROC curve comparison of machine learning, deep learning, and proposed hybrid ML–DL diagnostic 

models 

CONCLUSION AND FUTURE WORK 

In this study, the proposed hybrid ML–DL architecture achieved statistically meaningful improvements 

over standalone machine learning and deep learning baselines, with accuracy increasing from 86.4–

90.3% to 93.7% and F1-score from 85.3–89.9% to 93.0%, alongside an AUC–ROC of 0.96 that indicates 

strong class separability in high-dimensional biomedical data. These gains suggest that the integration 

of deep feature embeddings with classical classifiers does not merely provide marginal enhancements 

but delivers a robust performance uplift that is likely to be clinically relevant, especially in settings with 

moderate class imbalance. Although formal hypothesis testing (for example, McNemar’s test or 

DeLong-based AUC comparison) is beyond the scope of the present work, the consistent superiority of 

the hybrid model across multiple metrics and repeated runs supports its reliability as a diagnostic 

decision-support tool. From a future scope perspective, several extensions are planned. First, 

incorporating additional statistical analyses, such as confidence intervals for accuracy and AUC and 

formal significance testing between competing models, will further strengthen the evidence for clinical 

adoption. Second, expanding evaluation to multiple large-scale, multi-center datasets and additional 

metrics (e.g., Matthews correlation coefficient, balanced accuracy, and decision-curve analysis) will 

help assess robustness across diverse populations and clinical thresholds. Third, integrating temporal 

and multimodal data (imaging, signals, and EHR text), as well as exploring privacy-preserving strategies 

such as federated and distributed learning, can enhance generalization while maintaining data security. 

Finally, prospective validation in real-world clinical workflows, combined with user studies involving 

clinicians and patients, will be essential to quantify the practical impact, usability, and safety of the 

proposed hybrid diagnostic system in smart e-healthcare environments. 
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