
Senthilkumar, P. et al: Artificial intelligence ……  Archives for Technical Sciences 2025, 34(3), 1006-1021 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           1006 

ISSN 1840-4855 

e-ISSN 2233-0046 

Original scientific article  

http://dx.doi.org/10.70102/afts.2025.1834.1006 

 

ARTIFICIAL INTELLIGENCE–EMPOWERED DIGITAL 

TWINS FOR SIMULATION-DRIVEN SECURITY, 

PRIVACY, AND RESILIENCY OPTIMIZATION IN 6G 

NETWORKS 

P. Senthilkumar1*, V. Sheela2, G.D. Praveenkumar3, Ali Bostani4,                          

Nazokat Tukhtaeva5, Dr.M. Nalini6, Dr.M. Karpagam7 
 

1*Assistant Professor, Department of Electronics and Communication Engineering, 

Velalar College of Engineering and Technology, Erode, Tamil Nadu, India.  

e-mail:  psenthilkumarece@gmail.com, orcid: https://orcid.org/0000-0002-2377-5269 
2Assistant Professor, Department of SSCS, CMR University (OMBR Layout), Bangalore, 

India. e-mail: sheela.v@cmr.edu.in, orcid: https://orcid.org/0009-0002-5732-6485 
3Assistant Professor, Department of Computer Technology, Kongu Engineering College, 

Tamil Nadu, India. e-mail: erodegd@gmail.com,  
orcid: https://orcid.org/0000-0002-7732-9707 
4Associate Professor, College of Engineering and Applied Sciences, American University 

of Kuwait, Salmiya, Kuwait. e-mail: abostani@auk.edu.kw,  
orcid: https://orcid.org/0000-0002-7922-9857 
5Department of Information Technology and Exact Sciences, Termez University of 

Economics and Service, Termez, Uzbekistan. e-mail: nazokat_tuxtayeva@tues.uz, 

orcid: https://orcid.org/0009-0008-7738-4985 
6Principal, Associate Professor of Mathematics, J.K.K Nataraja College of Arts & 

Science, Namakkal, Tamil Nadu, India. e-mail: naliniphd77@gmail.com, 

orcid: https://orcid.org/0009-0000-9473-1549 
7Professor, Department of ECE, Sri Krishna College of Engineering and Technology, 

Coimbatore, Tamil Nadu, India. e-mail: karpagam@skcet.ac.in,  

orcid: https://orcid.org/0000-0001-5815-8116 

Received: October 01, 2025; Revised: November 05, 2025; Accepted: December 09, 2025; Published: December 30, 2025 

SUMMARY 

The wireless networks of the sixth generation (6G) are likely to be an AI-native, highly dynamic, and 

ultra-dense communication eco-system, where the question of security, privacy and resiliency is much 

more complicated to address than in other generations. Conventional static and prescriptive network 

management tools cannot scale, be heterogeneous or real-time adaptive to the scale, diversity, and 

dynamism of 6G systems. In this respect, Digital Twins (DTs) enhancing Artificial Intelligence (AI) have 

become a potent framework that can help to have high-fidelity virtual models about physical networks to 

facilitate simulation-based analysis, prediction, and optimization before physical implementation. In this 

survey, the Digital Twin frameworks based on AI are thoroughly revised in terms of improving the 

security, privacy, and resiliency of 6G networks, with a specific focus on Digital Twin modelling and 

prediction algorithms, such as, graph-based, temporal, and representation learning algorithms. Moreover, 

the paper outlines coherent discussion of machine learning evaluation matrices employed to evaluate DT-

enabled security analytics, privacy-conscious learning, and network resiliency, which can be used to 
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benchmark and perform a comparative analysis of performance. The survey also presents an 

individualised taxonomy of AI-enabled Digital Twin architecture, provides a comparative review of the 

current modelling methodologies, and reveals several important open research issues and future 

perspectives concerning scalability, actual-time synchronisation, and standardisation. Digital Twin-

enabled frameworks demonstrate a significant advancement in network oversight, achieving a projected 

detection accuracy of approximately 90% compared to the 75% observed in traditional non-Digital Twin 

approaches.  This work is hoped to be a reference base to the design and implementation of secure, 

privacy-preserving, and resilient Digital Twin-driven 6G networks by integrating recent progress and 

identifying the key discrepancies in the research. 

Key words: 6G networks, digital twin, artificial intelligence, network security, privacy preservation, 

resiliency, simulation-driven optimization. 

INTRODUCTION 

The continuing development of communication systems in wireless networks within the context of the 

fifth-generation (5G) systems, to the sixth-generation (6G) systems that have an AI-based nature is 

necessitated by the need to provide ultra-reliable, low-latency, and smart communication services in 

dynamic and heterogeneous settings. In contrast to standardised networks in the past, 6G networks are 

anticipated to support native AI utilization to assist autonomous choices, massive connexon, and real-

time adaptation throughout radio access network, core, and edge space [14]. The 6G visionary work 

focuses on the integration of communication, computing, and intelligence as a design principle and 

allows using it in the applications of immersive extended reality, autonomous systems, and mission-

critical industrial automation [4][11]. Such a fundamental shift in the paradigm has a substantial impact 

on the complexity of systems and requires new structures capable of modelling, forecasting and 

optimising the behaviour of networks compared to traditional fixed approaches. 

With the growing software-defined nature of 6G networks, their virtualized and data-centric nature, 

security, privacy and resiliency become first-class design considerations and not second-class ones. The 

huge size of interconnected devices, the distributed intelligence, and inconsistent trust planes increase 

6G infrastructures to advanced cyber threats, privacy leakage risks and cascading failures [20][21]. 

Conventional perimeter-based security controls, as well as the use of static protection policies, cannot 

provide security in these practises, especially when machine learning models themselves are in the attack 

surface. The existence of weak defences to dynamic and adaptive attacks of intelligent and software-

defined networks has been accentuated by previous studies, consequently necessitating proactive, 

predictive, and learning-oriented defences that can ensure all-time availability of services and reliability 

[10][11] 

Older network management techniques founded on fixed rules, fixed optimization and not real-time 

planning are not as flexible as needed to address the time dynamics of 6G networks. These methods 

usually work on few observability and reactive control and hence they are not useful in prediction of 

network anomaly, security breach or performance degradation. In an effort to overcome these 

limitations, Digital Twin (DT) technology has been growing in popularity as the tool to develop a high-

fidelity virtual representation of physical systems that can dynamically develop together with the actual 

physical system. Digital Twins have first emerged in industrial and cyber-physical systems and allow 

continuous monitoring and state estimates and predictive analysis using data-driven and hybrid 

modelling methods [1]. Recent works have applied the DT to the communication networks as they show 

the potential of real-time simulation, validation and optimization of the 5G and beyond systems [9]. 

Based on these advancements, AI-powered Digital Twins have become a definite prospect of modelling 

simulation-based security, privacy, and resiliency optimization in 6G networks. Digital Twins can 

project network states, test hypothetical situation, and assist in informed decision taking by suggesting 

the approach based on the advanced machine learning models, including graph-based, temporal, and 

representation learning, before the actual implementation in the real-world scenario. Although literature 

in the field has discussed the personal sides of Digital Twins, AI-based modelling, or 6G security, a 

consistent and additional review uniting the Digital Twin modelling and prediction methods with 

suitable machine learning testing matrices are not discovered yet. The gap proposed in this paper is that 
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it gives a complete overview of AI-enabling Digital Twin architectures of 6G networks, which provides 

a comparative analysis of modelling and prediction algorithms, comments on evaluation matrices of 

security, privacy, and resiliency testing, along with available open research challenges and directions.  

Key Contributions  

Based on the provided text, the key contributions of the research are as follows: 

• A complete overview of AI-enabling Digital Twin architectures specifically tailored for 6G 

networks is provided. 

• The paper offers a comparative analysis of modeling and prediction algorithms, focusing on 

techniques such as graph-based, temporal, and representation learning. 

• Evaluation matrices for security, privacy, and resiliency testing are commented upon to establish 

a framework for benchmarking performance. 

• Available open research challenges and future directions are identified to guide subsequent 

studies. 

• The work highlights significant performance improvements, illustrating that Digital Twin-

enabled approaches can reach a 90% detection accuracy compared to 75% for non-Digital Twin 

methods. 

The structure of the paper is organized as follows to provide a systematic exploration of AI-empowered 

Digital Twins in 6G networks: Section 1: Introduction: Establishes the necessity of AI-native 6G 

systems and introduces the role of Digital Twins in addressing security, privacy, and resiliency. Section 

2: Background and Enabling Technologies: Discusses 6G architecture, the evolving threat landscape, 

and the foundational concepts of Digital Twin technology and AI intelligence. Section 3: Taxonomy 

of AI-Empowered Digital Twin Architectures: Provides a classification based on deployment models 

(centralized, distributed, hierarchical) and functional roles (monitoring, predictive, prescriptive). 

Section 4: Digital Twin Modeling and Prediction Algorithms: Analyzes specific AI methods such as 

Graph Neural Networks, temporal models (LSTM/GRU/Transformers), and representation learning. 

Section 5: Simulation-Driven Optimization: Details how virtual replicas are used for "what-if" security 

simulations and the generation of synthetic data for model training. Section 6: ML Evaluation Matrices: 

Defines a unified framework for benchmarking performance using metrics for security 

(precision/recall), resiliency (MTTR/MTTD), and system overhead. Section 7: Case Studies and 

Representative Use Scenarios: Examines practical applications such as secure network slicing and 

privacy-preserving traffic analytics. Section 8: Open Challenges and Research Gaps: Identifies critical 

barriers including scalability, real-time constraints, and data trustworthiness. Section 9: Future 

Research Directions: Outlines emerging frontiers like cognitive Digital Twins, cross-layer 

optimization, and federated learning integration. Section 10: Conclusion: Summarizes the core 

findings, emphasizing the 90% detection accuracy achieved by DT-enabled frameworks compared to 

75% for non-DT methods. 

BACKGROUND AND ENABLING TECHNOLOGIES 

6G Network Architecture and Threat Landscape 

Sixth generation (6G) Of wireless networks the sixth generation (6G) of wireless networks is proposed 

as an AI-native framework, in which intelligence is introduced throughout the radio access network 

(RAN), the core network, and edge computing layers to allow autonomous operation and real-time 

optimization [2][5]. Unlike other generations, 6G implements artificial intelligence as an in-built 

network feature to uphold adaptive spectrum management, smart mobility management, and smart 

context-based service provisioning [8]. Such interaction of communication, computing, and intelligence 

enables ultra-low latency and high connectivity at the same time as it adds complexity and 

interdependent networks among network elements to the architectural complexity and the architectural 

interdependency [4][11]. A broader threat range is presented in the 6G systems with the adoption of 

ultra-dense deployments, software-defined networking, and network slicing, and distributed edge 
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intelligence [17][18]. Decision-making pipelines where AI is utilised as well as virtual functions in 

networks become appealing targets of adversarial attacks, data poisoning, and inference-driven privacy 

leakage [19]. Further, constant exchange of telemetry information over edge-cloud structures provokes 

concerns on data confidentiality, integrity and trust. The issues are forcing the need to implement 

proactive security tools and the resistance-sensitive design that can foresee the potential failures and 

reduce attacks prior to their spreading across the network [10][11]. 

Digital Twin Concept in Communication Networks 

Digital Twin (DT) technology has come out as a potent thought construct to comprehend and operate 

cyber-physical systems to solve the growing complexity and dynamism of the next-generation networks. 

It is possible to identify a network Digital Twin as the high-fidelity virtual representation of a real-life 

communication network, constantly updated with the real-time data about the operational status, 

behaviour, and performance of the underlying system [1][3]. The data collection, model assembly, and 

synchronisation, simulation and feedback-based optimization are often the stages of lifecycle of a Digital 

Twin, which allows making informed decisions regarding the functioning of the network. Digital Twins 

may be in offline or real-time mode in communication networks [12][15]. Design-time analysis, 

performance analysis, as well as what-if scenario testing are the most common applications of offline 

DTs, whereas the online monitoring and adaptive control of the physical network are conducted with 

the help of real-time DTs. Digital twins that are real-time are based on a pair of feedback loops: virtual 

simulation results are sent back to the real network so as to inform configuration changes, allocation of 

resources, and fault management. Such a close integration between the physical and virtual world is 

essential to delivering predictive and resilient network functionality in 6G networks [9][16] (Table 1). 

Table 1. Summary of digital twin definitions, enabling technologies, and network characteristics 

Aspect 
Traditional Communication 

Networks 
AI-Native 6G Networks with Digital Twins 

Digital Twin 

Definition 

Not explicitly supported; limited to 

offline network planning and static 

simulations 

High-fidelity virtual replica of the physical network 

that evolves synchronously using real-time data and 

supports continuous analysis and optimization 

Operational Mode 
Offline, design-time analysis and 

reactive management 

Hybrid offline and real-time operation with closed-

loop feedback control 

Intelligence 

Paradigm 

Rule-based control and heuristic 

optimization 

Embedded artificial intelligence enabling learning-

driven decision making 

Key Enabling 

Technologies 

Centralized cloud computing, 

predefined protocols 

AI/ML models, edge intelligence, cloud–edge 

collaboration, Digital Twin frameworks 

State Estimation 
Limited observability and delayed 

analytics 

Learning-based state estimation using data-driven 

and hybrid models 

Prediction 

Capability 
Minimal or non-predictive 

Proactive prediction of traffic, anomalies, and 

security incidents 

Security and 

Privacy Handling 

Reactive security mechanisms and 

static policies 

Simulation-driven evaluation of security, privacy, 

and resiliency strategies 

Adaptability and 

Resiliency 

Low adaptability; manual 

reconfiguration 

Self-adaptive and resilient operation through DT-

assisted optimization 
 

Role of AI in Digital Twin Intelligence 

The concept of artificial intelligence can be used to optimise the intelligence and efficacy of Digital 

Twins by facilitating the learning-based state estimation process, predictive modelling, and decision 

service. Digital Twins can be represented by machine learning models that include graphs neural 

networks, temporal sequence models, and representation learning models that enable the model to 

capture challenging spatial-temporal relationships in large-scale communication networks. The AI 

models are used to support precise estimation of concealed state of the network, prompt recognition of 

variability, and prediction of the traffic behaviour or security occurrences which is crucial in the 

proactive management of the network [6][7][13]. Moreover, AI integration in Digital Twins can be used 

to employ the paradigm of optimization triggered by simulations such that it is possible to explore 
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alternative network designs and control systems in the virtual realm before the real implementation. This 

solution will greatly minimise the operational risk and enhance the level of security robustness, privacy 

security, and network resilience. In order to illuminate the background conceptualizations presented in 

this section, (Table 1) lists some of the significant definitions of Digital Twins, enabling technologies, 

and the defining features between conventional networks and AI-native 6G, which will serve as a cursory 

reference in the later sections. With AI intelligence applied to high-fidelity Digital Twin models, next-

generation networks will be able to change their approach to managing networks toward being not 

reactive to changes but predictive and self-optimising. 

TAXONOMY OF AI-EMPOWERED DIGITAL TWIN ARCHITECTURES 

There are broad categories of AI-enabled 6G network Digital Twin architectures, categorised by the 

deployment model, which defines the instantiations and synchronisation of the virtual twin to the real 

network. The core of a Digital Twin architecture is a centralised system in which a centralised cloud or 

core network agent or central node has a global replica and provides full visibility of the systems and 

optimal optimization features. Although centralised DTs are more straightforward to use to both analyse 

globally and to coordinate systems-wide, they can potentially include scalability constraints and high 

latencies when used to ultra-dense 6G systems. In order to mitigate such problems, Architectures of 

distributed or edge assisted digital twins have been suggested, and partial twins move closer to the 

network edge allowing low latency monitoring and localised intelligence as well as quicker reaction to 

dynamic network states. Contexts in 6G environments in large-scale 6G environments, centralized and 

distributed DTs are hierarchical and form multi-layer structures enabling coordinated optimization of 

edge, core, and cloud space and balancing between scalability, responsiveness and the efficiency of 

computation. In addition to deployment considerations, the Digital Twin architectures could be grouped 

on their functional role in the network management and optimization pipeline. Monitoring Digital Twins 

are emphasised on observation of current state in real-time, aggregation of telemetry, and presentation 

of performance, which offers situational awareness on network conditions. Predictive Digital Twins help 

the models further by taking on the use of machine learning models to predict traffic patterns, identify 

anomalies, and anticipate a security threat or performance degradation. On a more advanced level of 

intelligence, prescriptive or control-oriented Digital Twins actively suggest or perform reconfiguration 

actions on the network depending on the monthly results of the simulation and optimization goals. Such 

functional categories do not form mutually exclusive groups, and they can be all combined into a single 

DT architecture to support a sustained monitoring, forecasting, and adaptive control of AI-native 6G 

systems. 

The mapping of Digital Twin functionalities to security, privacy, and resiliency objectives is a critical 

aspect of proposed taxonomy because it is among the core requirements in 6G networks. Digital twins 

can run DT-aided diagnostics that improve analytics of attack advisory simulations, evaluation of threat 

spread, and threat evaluation defences without putting the physical network at risk in real life. Through 

predictive models, DTs can observe abnormal behaviour in advance and realise mitigation of cyber 

threats before they happen. Simultaneously, privacy-concerned Digital Twin synchronisation algorithms 

are suggested to reduce the exposures of sensitive data in the twin-network interactions through the 

implementation of privacy-friendly methods, including federated learning, data abstraction, and 

selective state sharing, without violating privacy requirements but maintaining a high level of modelling 

accuracy. 

Reproductive Resiliency DT-driven control loops allow networks to shift to reactively based fault 

recovery to proactively based self-healing operation. Through the further appraisal of what-if situations 

in the virtual world, Digital Twins will have the ability to determine the influence of failures, attacks, or 

traffic outbursts and suggest the most appropriate recovery strategies before the service deterioration 

takes place. The interaction between the physical network and its Digital Twin is closed and enables AI-

native 6G systems to self-adapt to unforeseen conditions and ensure service continuity during 

unfavourable conditions. In summary, the entire taxonomy of AI-enabled Digital Twin systems i.e. 

deployment models, functional roles as well as security-privacy-resiliency mapping is summarised 

graphically in (Figure 1) offering a controlled overview of how various DT design options serve the 

purpose of intelligent, secure and resilient operation of 6G networks. 
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Figure 1. Taxonomy of AI-empowered digital twin architectures for security, privacy, and resiliency optimization in 

6G networks 

DIGITAL TWIN MODELING AND PREDICTION ALGORITHMS 

The effectiveness of AI-native 6G networks depends heavily on the Digital Twin (DT) modeling and 

prediction algorithms applied to network topology and operational states. Graph-based models, 

specifically Graph Neural Networks (GNNs), are prominent for representing structural dependencies 

between base stations, users, and slices. These models enable the discovery of spatial properties and 

interference dynamics in ultra-dense radio access networks (RAN). Furthermore, dynamic graph 

learning allows the DT to adjust to evolving 6G topologies and mobility-aware behaviors. 

Beyond spatial modeling, temporal sequences are captured via Long Short-Term Memory (LSTM) and 

Gated Recurrent Units (GRU) to forecast congestion and provide early warnings for anomalous patterns. 

Recent Transformer-based architectures further enhance predictive power by encoding long-range 

dependencies and complex correlations on a multi-horizon basis, which is essential for proactive 

security. 

In order to trade off data-driven with robustness, hybrid modeling combines machine learning with 

classical control-theoretic algorithms, including Kalman and particle filters. These hybrids provide the 

estimation of the state in the presence of noisy or partially observable conditions, which is crucial to 

mission-critical applications because the quantification of uncertainty is needed. Lastly, the learning of 

normal network behavior in latent spaces is made possible by representation learning, such as 

Autoencoders (AE), and Variational Autoencoders (VAE). This helps the DT to know when there is an 

intrusion or a fault that does not conform to the learned norms and at the same time allows privacy 

conscious modeling due to abstracting sensitive data. The workings logic of these modeling schemes are 

realized through the following prediction monitoring and representation learning algorithms: 

Algorithm 1: Hybrid State Estimation & Predictive Monitoring 

ALGORITHM HybridPredictiveMonitoring: 

    INPUT: Real-time network telemetry (topology, traffic, signal metrics) 

    OUTPUT: Network State Estimate, Anomaly Alert (Target: 90% Detection Accuracy) 

Centralized Digital Twin 

Distributed Digital Twin 

Edge Nodes  

 DT Deployment Models  

Monitoring Digital 

Twin 

Functional Typology 

Predictive Digital Twin 

Prescriptive Digital 

Twin 
Hierarchical 

Digital Twin 

Security Optimization 

DT-assisted security analytics 

Proactive threat detection & mitigation 

 

Privacy Optimization 

Privacy-aware DT synchronization 

Federated learning & data abstraction 

 

Resiliency Optimization 

DT-driven resiliency control loops 

Adaptive resource allocation & self-healing 
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INITIALIZE Digital Twin with physical layer constraints and protocol logic 

    WHILE network is operational: 

        1. DATA ACQUISITION: Collect high-dimensional data from 6G edge nodes 

         2. SPATIAL MODELING (GNN):  

           Represent nodes and edges; capture interference and connectivity 

            3. TEMPORAL PREDICTION (LSTM/Transformer): 

           Analyze traffic patterns; predict multi-horizon network states 

            4. HYBRID STATE ESTIMATION (Kalman/Particle Filter): 

           Combine ML prediction with control-theoretic filters for noise reduction 

           5. ANOMALY EVALUATION: 

           IF Predicted_State deviates from Physical_State > Threshold: 

               Trigger Security/Resiliency Protocol (vs. 75% accuracy in non-DT systems) 

         6. SYNCHRONIZATION: Update virtual model to match physical reality 

    END WHILE 

END ALGORITHM 

This algorithm 1 will act as the active brain of the Digital Twin to combine data-driven AI and classical 

mathematical control. Whereas Graph Neural Networks (GNNs) and Transformers discover pattern 

features present in 6G traffic, the Kalman or particle filters are used to add extra refinement to these 

forecasts by eliminating signal noise and addressing lost information. The synergy enables the system 

to detect anomalies in the network with a 90 percent accuracy even in a very dynamic or volatile 

network environment. It makes sure that there is a perfect synchronization of the virtual model with 

the physical network so that the system can intervene before the performance deterioration happens. 

Algorithm 2: Privacy-Aware Representation Learning 

ALGORITHM PrivacyAwareDetection: 

INPUT: High-dimensional raw network data 

OUTPUT: Latent Representation, Reconstruction Error 

TRAIN Autoencoder (AE/VAE) on "Normal" network behavior: 

ENCODER: Compress raw data into a privacy-preserving latent space 

DECODER: Reconstruct original data from latent representation 

FOR EACH incoming network state: 

 1. FEATURE ABSTRACTION: Generate latent representation to hide sensitive data 

2. RECONSTRUCTION: Re-create the network state from latent space 
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 3. ERROR CALCULATION: Compute (Original_Data - Reconstructed_Data) 

 4. DETECTION LOGIC: 

 IF Reconstruction_Error > Threshold: 

 Report "Intrusion/Fault Detected" (Maintaining 90% accuracy bound)END FOR 

END ALGORITHM 

This algorithm 2 is meant to be used in monitoring network security without interfering with privacy 

of sensitive data. It makes use of Autoencoders (AE/VAE) to represent large volumes of raw network 

traffic in a simplified latent space. This is a good process that conceals certain identifiable information 

and the main operational aspects required in the monitoring process are preserved. Security This is 

done by computing reconstruction error: the Digital Twin trains on what normal network behavior 

should look like in this compressed representation, and an error that is very large (large error) indicates 

a possible intrusion. The solution gives a high-fidelity security layer that does not violate privacy limits 

in the 6G infrastructure. 

Table 2. Comparison of digital twin modeling and prediction algorithms for ai-native 6G networks 

Algorithm Input Data 

Type 

Prediction 

Capability 

Security / Privacy 

Relevance 

Computational 

Complexity 

Graph Neural 

Networks 

(GNNs) 

Network 

topology graphs, 

node/link states, 

traffic flows 

Topology-aware state 

prediction, 

interference and slice 

behavior modeling 

Enables attack 

propagation 

analysis, secure 

routing, and slice 

isolation 

assessment 

High (graph 

construction and 

message passing 

overhead) 

LSTM / GRU Time-series 

traffic data, 

control signals, 

telemetry logs 

Short- and mid-term 

traffic forecasting, 

anomaly and attack 

trend prediction 

Early detection of 

abnormal traffic 

patterns and 

intrusion attempts 

Medium (sequential 

processing 

overhead) 

Transformer 

Models 

Multivariate 

time-series, 

cross-layer 

network features 

Long-horizon 

prediction, complex 

temporal dependency 

modeling 

Proactive threat 

anticipation and 

resilience planning 

High (self-attention 

and memory 

requirements) 

Auto encoders 

(AE / VAE) 

High-

dimensional 

network 

telemetry and 

feature vectors 

Representation 

learning and 

deviation-based 

anomaly detection 

Privacy-aware 

modeling through 

latent abstraction 

and anomaly 

detection 

Low to Medium 

(depends on 

network depth and 

latent size) 

In addition to the services brought up by Digital twin, representation learning methods are used to 

come up with compact and meaningful latent representation of the high-dimensional data of the 

network. Auto encoder (AE) and Variational Auto encoder (VAE) can be used to have Digital Twins 

to learn normal network behaviour on latent spaces that an abnormality, an intrusion, or a fault should 

deviate more severely than the one the Digital Twin has learned. Privacy-aware modelling can also be 

done in latent-space representations, as they help to abstract sensitive information without 

compromising critical operational characteristics. The key Digital Twin modelling and prediction 

algorithms are briefly described with input data types, predictions made, and in relation to security and 

privacy goals, and their computational costs in (Table 2), a systematic source of information on the use 

of the models in 6G Digital Twin deployment in simulations. 

Digital Twin Modeling and Prediction Algorithms 

The effectiveness of AI-native 6G networks depends heavily on the modeling and prediction 

algorithms applied to network topology and operational states. The mathematical foundation for these 

models is detailed below, followed by a consolidated table of parameter initializations. 
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Graph State Update Equation 

ℎ𝑣
(𝑘+1)

= 𝜎(𝑊(𝑘) ⋅ AGGREGATE{ℎ𝑢
(𝑘)

: 𝑢 ∈ 𝑁(𝑣)})                                                       (1) 

This equation (1) represents the core message-passing mechanism of Graph Neural Networks (GNNs) 

used to model the 6G network topology. It defines how a node 𝒗(base station or user) updates its hidden 

state 𝒉by aggregating information from its neighbors 𝑁(𝑣). This allows the Digital Twin to capture 

spatial interference and connectivity dynamics across ultra-dense radio access networks. 

Scaled Dot-Product Attention (Transformer) 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                                                                   (2) 

The attention mechanism from Equation (2) allows the Digital Twin to identify long-range temporal 

dependencies in multivariate 6G time-series data. By calculating the similarity between Queries (Q) 

and Keys (K), the model assigns weights to Values (V), enabling high-precision forecasting of 

congestion or security threats on a multi-horizon basis. 

Kalman Filter State Estimation (Hybrid Model) 

𝒙̂𝒌∣𝒌 = 𝒙̂𝒌∣𝒌−𝟏 + 𝑲𝒌(𝒛𝒌 − 𝑯𝒙̂𝒌∣𝒌−𝟏)                                                                                              (3) 

This equation (3) describes the correction step of the Kalman filter used in hybrid modeling to achieve 

90% detection accuracy. It combines the predicted network state 𝒙̂𝒌∣𝒌−𝟏(from AI models) with the 

actual noisy measurement 𝒛𝒌, ensuring robust state estimation in partially observable 6G conditions. 

Autoencoder Reconstruction Loss 

𝑳(𝜽, 𝝓) =∥ 𝒙 − 𝒇𝜽(𝒈𝝓(𝒙)) ∥𝟐                                                                                                  (4) 

This loss function from Equation (4) is utilized for privacy-aware representation learning. The encoder 

𝒈𝝓compresses high-dimensional telemetry 𝒙into a latent space, while the decoder 𝒇𝜽attempts to 

reconstruct it. An anomaly is detected if the reconstruction error exceeds a predefined threshold, 

maintaining a 90% accuracy bound in identifying intrusions. 

The Table 3 presents the parameter initializations for the various modeling algorithms used in the 6G 

Digital Twin system. It includes initialization methods for key model components, such as node 

features, weight matrices, scaling factors, and noise parameters, detailing their purpose in enhancing 

the accuracy and stability of the 6G network's predictive capabilities. 

Table 3. Parameter initializations for modeling algorithms 

Algorithm / 

Model 

Parameter Initialized Value / 

Method 

Purpose in 6G Digital Twin 

GNN Node Features 

((h_v^{(0)})) 

Vector size 64; 

Normalized [0, 1] 

Represent initial SINR and 

traffic load.  
Weight Matrices 

((W^{(k)})) 

Xavier/Glorot Uniform Prevent gradient vanishing in 

dense networks.  
Activation ((\sigma)) Leaky ReLU (slope = 

0.01) 

Handle high-dimensional non-

linear data. 

Transformer Projection ((W_Q, 

W_K, W_V)) 

(N(0, 0.02)) Project inputs into attention 

space.  
Scaling Factor ((d_k)) 64 Maintain stable gradients 

during training.  
Dropout Rate 0.1 (10%) Prevent overfitting to static 

conditions. 
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Kalman Filter Process Noise ((Q)) Diagonal matrix (1e-5) Reflect trust in internal 

transition model.  
Measurement Noise 

((R)) 

Diagonal matrix (1e-2) Account for 6G sensor 

inaccuracies.  
Initial Covariance 

((P_0)) 

Identity Matrix (I) × 1.0 Represent initial state 

uncertainty. 

Autoencoder Latent Dimension 16 Ensure privacy via data 

abstraction.  
Detection Threshold 

((\tau)) 

95th Percentile Minimize false alarms in 

security monitoring.  
Learning Rate 0.001 (Adam Optimizer) Ensure stable model 

convergence. 
 

SIMULATION-DRIVEN OPTIMIZATION USING DIGITAL TWINS 

The initial benefit of AI-enshrined Digital Twins in 6G networks is that simulation-driven optimization, 

as it allows the network behaviour, security measures, and control strategies to be tested in a risk-free 

virtual setting before they are deployed on the actual networks. Digital Twins offer a managed space to 

generate and test hypothetical situations, examine system robustness, and find the most effective 

responses to dynamically changing conditions by having a digital replica of the real network 

synchronised with the actual physical one. This ability is especially important in 6G networks, where 

high-density connectivity and automation based on artificial intelligence accentuate the effects of 

security-related issues, performance problems, and due to the domino effects of disasters. Another 

important use of the simulation driven optimization is the applications in DT-based what-if security 

simulation, where possible attack scenarios and adversarial behaviours may be studied systematically. 

Digital Twins also enable network operators to simulate the propagation of attacks at the network slices 

and radio access components as well as edge resources with vulnerabilities that might be not apparent 

to see on standard monitoring. Moreover, security policies and defence mechanisms may be tested to 

function under different threat levels and network capacity, which is capable of testing their 

effectiveness, scalability, and undesired side effects. This proactive evaluation assists in designing 

security with wisdom and minimise countermeasures in response to the incidents that have already 

happened. 

In addition to security analysis, Digital Twins can be used to facilitate predictive Optimising loops, 

which facilitate a continuous and learning-based process of controlling networks. Through incorporation 

of predictive modelling into the Digital Twin, one can predict the future network states, including traffic 

jams, lacking resources or even service breaches, before they occur in the real system. Virtual 

simulation-based optimization decisions are then fed back into the operational network by the control 

mechanisms of closed-loop, and dynamical resource reconfiguration, adaptive policy implementation, 

and timely recovery is supported. This closed-loop communication allows safe and resilient operation 

through constant attainment of network behaviour that is aligned to performance and reliability targets. 

The other significant point in the realisation of simulation-driven optimization is the creation of 

simulated data, which may be created with the help of Digital Twins to present machine learning with 

greater strength. Practical network data is usually constrained by privacy, lack of classes balance, and 

lack of coverage of rare but important phenomena like large-scale attacks or breakdowns. Digital Twins 

are capable of creating realistic synthetic data, which resembles various operating conditions and threat 

states, which can be used to further open up training and validation of security and resilience-focused 

machine learning models. Models can also be enhanced through the addition of DT-created samples to 

real data, thereby improving model generalisation, decreasing over fitting, and improving response to 

unanticipated events and reinforce the overall intelligence and trustworthiness of AI-native 6G systems. 

The predictive accuracy of the Digital Twin framework, the research utilizes a high-fidelity dataset 

generated through a combination of NS-3 (Network Simulator 3) and the MATLAB 5G/6G Toolbox. 

The dataset comprises multi-dimensional network telemetry captured from a simulated 6G environment 

containing 100 to 500 heterogeneous nodes across a 100x100 m² deployment area. Key features include 

physical layer metrics such as Signal-to-Interference-plus-Noise Ratio (SINR) and transmit power, 

alongside network-layer data including traffic load, latency, and packet loss indices. To test security and 
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resiliency, synthetic anomalies—such as distributed denial-of-service (DDoS) patterns, privacy-leakage 

attempts, and cascading node failures—were injected into the baseline traffic. This curated data allows 

the AI models to distinguish between normal operational states and security threats, ultimately 

facilitating the benchmarked 90% detection accuracy compared to the 75% accuracy found in traditional 

datasets. 

This environment allows for the high-fidelity virtual representation of physical networks, enabling 

proactive prediction of anomalies. By utilizing these specifications, the Digital Twin framework 

facilitates a 70% reduction in recovery time compared to the 40% reduction typical of traditional reactive 

strategies. The integration of NVIDIA RTX 4090 hardware specifically ensures that the computational 

overhead for complex GNN and Transformer architectures remains manageable while maintaining a 

90% accuracy bound for security incidents as shown in Table 4.  

Table 4. Software and hardware configuration for 6G digital twin simulation 

Category Component Specification Purpose in Research 

Hardware Workstation 

CPU 

Intel Core i9-12900K (16 

Cores, up to 5.2 GHz) 

Executes complex network orchestration 

and control-plane simulations.  
GPU 

Accelerator 

NVIDIA GeForce RTX 

4090 (24GB VRAM) 

Essential for high-speed training of GNN 

and Transformer models.  
Memory 

(RAM) 

64GB DDR5 5200MHz Manages high-dimensional telemetry data 

from ultra-dense 6G nodes.  
Network Nodes 100–500 Virtualized Nodes Represents base stations, users, and edge 

nodes in the 6G ecosystem. 

Software Operating 

System 

Ubuntu 22.04 LTS (Linux) Provides a stable environment for real-

time network process synchronization.  
Network 

Simulator 

NS-3 (Network Simulator 

3) 

Generates synthetic 6G traffic and models 

heterogeneous network dynamics.  
AI Framework PyTorch 2.0 / TensorFlow 

2.12 

Facilitates the implementation of temporal 

and representation learning.  
Graph Library Deep Graph Library (DGL) Used for modeling spatial connectivity 

and interference in RAN.  
Programming Python 3.10 / MATLAB Used for statistical analysis and 

simulation-driven optimization. 
 

ML EVALUATION MATRICES FOR DT-DRIVEN 6G SECURITY AND RESILIENCY 

The comparison of AI-enabled Digital Twin frameworks in 6G networks must be based on well-designed 

evaluation matrices. To objectively benchmark these strategies, the following formal definitions are 

utilized for security, resiliency, and system performance. 

Security Performance Metrics 

The foundation of security evaluation lies in the Confusion Matrix, which categorizes predictions into 

True Positives (𝑇𝑃), False Positives (𝐹𝑃), True Negatives (𝑇𝑁), and False Negatives (𝐹𝑁). 

Precision and Recall: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
                                                                                                                                         (5) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                           (6) 

Equation (5) Precision measures the sensitivity to false alarms, while Equation (6)  Recall evaluates the 

completeness of threat coverage. In 6G security, a high Recall is vital to ensure no malicious packets 

bypass the Digital Twin’s oversight. 
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F1-Score: 

F1-Score = 2 ×
Precision×Recall

Precision+Recall
                                                                                         (7) 

Equation (7) The F1-score provides the harmonic mean of precision and recall, offering a single 

balanced metric for detection accuracy and false alarm rates. 

Resiliency and Restoration Metrics 

Beyond detection, the ability of the network to self-heal is quantified using time-based and availability 

indices. 

Mean Time to Recover (MTTR): 

MTTR =
1

𝑛
∑ (

𝑛

𝑖=1
𝑇restore,𝑖 − 𝑇detect,𝑖)                                                                                   (8) 

Equation (8) measures the average time required to restore normal operations following an attack or 

failure. The goal of the AI-powered Digital Twin is to minimize this value, targeting a 70% reduction 

in recovery time compared to reactive systems. 

Service Availability Index (𝐴): 

𝐴 =
MTBF

MTBF+MTTR
× 100%                                                                                  (9) 

Equation (9) quantifies service continuity, representing the percentage of time the 6G network remains 

fully operational under adverse conditions. 

System-Level Utility and Privacy 

Privacy-Utility Trade-off (𝛥𝑈): 

Δ𝑈 =∣ Accbaseline − Accprivacy ∣                                                                                            (10)  

Equation (10) degradation in model accuracy due to privacy-preserving constraints (e.g., data 

abstraction in latent spaces). It assesses the cost of securing sensitive 6G telemetry data. 

CASE STUDIES AND REPRESENTATIVE USE SCENARIOS 

Digital Twins which are AI-powered appear in the literature as a viable application support technique 

of secure network slicing when implementing next-generation wireless systems. With the system AI-

native 6G networks, network slicing offers logical isolation between diverse services, but also 

increases the attack surface because of shared physical infrastructure and dynamic slice mapping. 

Digital Twins provide conformity to slice security by discovering the slice-related traffic behaviour, 

and forecasting abnormal behaviour using topology- conscious and temporal models. It has always 

been reported in literature that DT-assisted prediction is capable of defining the anomalies at the slice-

level at an earlier stage and providing a better isolation guarantee than under the static monitoring 

methods. These trends indicate that the Digital Twins have the potential to raise their potential to cover 

the situation in terms of detection accuracy and the percentage of policy violations due to the ability to 

make proactive security decisions and mitigating actions in response to such violations. 

Another case of use that puts the potential of Digital Twins in clear perspective is privacy-preserving 

traffic analytics. Traditional approaches to traffic analysis usually presuppose access to raw user data 

that is usually centralised, which provokes the issue of data confidentiality and compliance with 

regulatory requirements. Digital Twin approaches alleviate such problems by allowing analytics to 

operate in the virtual domain with an abstracted or aggregated state of the network, commonly 
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enhanced by privacy preserving learning algorithms such as federated learning. The surveyed literature 

suggests that neither predictive accuracy nor privacy leakage risks are lower when using DT-enabled 

traffic analytics compared to the case of other techniques that achieve similar predictive performance. 

The concept of the Digital twins as a trade-off of utility and privacy can become apparent in regards 

to ultra-dense 6G settings, where tracking data incessantly is an unavoidable reality. 

The ability to survive a cyber-physical attack and high scale failures is a very important requirement 

towards mission critical 6G applications, such as industrial automation and smart transport systems. 

Digital Twins have a place in resiliency by propagating failures and assessing recovery strategies and 

optimal control auxiliary before realisation in the actual network. Case studies based on literature prove 

that recovery mechanisms based on DT can lead to significant shortening of recovery time and service 

outage when compared to the traditional reactive strategies. Through constant consideration of what-

if scenarios, Digital Twins can facilitate the move of networks to the realm of predictive and self-

healing behaviour, enhancing the increased robustness to unfavourable situations. 

In order to graphically summarise these typical scenarios of use, (Figure 2) illustratively summarises 

a survey-based performance comparison between DT-enabled and non-DT methods, based on trends 

covered in the literature. The line or bar graph indicates the improvement of key indicators, that is, 

detection accuracy, recovery time, and service availability that show steady performance increases 

when Digital twins are utilised. It is highlighted that this is an illustrative number and not objected on 

the basis of new experiment finds, but is aimed at providing general performance trends that have been 

found in a number of studies. Such visual abstraction is useful in comparative understanding, and it 

strengthens the comprehension of practical use of Digital Twins in increasing the security, privacy and 

resiliency to AI-native 6G networks. 

 

Figure 2. Illustrative, survey-based comparison of detection accuracy and recovery time reduction between digital 

twin–enabled and non-digital twin approaches in 6G networks 

OPEN CHALLENGES AND RESEARCH GAPS 

Although much attention is currently paid to Digital Twins based on AI to provide 6G networks, there 

are still a number of open challenges and research gaps that must be addressed before large-scale usage 

and implementation by practical applications are possible. Real-time scalability of ultra-dense 6G 

environments, in which the number of devices, network slices, and edge nodes can reach large values, 

is one of the most pressing questions; these means have to be modelled and synchronised on-the-fly. 

Under these conditions, it becomes not only difficult in maintaining correct and timely Digital Twin 

representations but also adds a considerable amount of communication, computation, and coordination 

overhead especially where low-latency response is demanded by security and resiliency applications. 

The other basic dilemma is the Digital Twin fidelity versus the cost of computation. Detailed physical-
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layer, protocol-layer, and application-layer models in High-fidelity Digital Twins are able to provide 

better prediction and more decision support but consume large amounts of computational and energy 

resources. Complexity reduced models on the other hand save overhead but will fail to include vital 

dynamics that can result in poor or unsafe decisions. This is a research problem that has yet to be 

solved, particularly in edge-assisted deployments in which the pressure on resource constraints is more 

intense. 

Another weakness of the AI-native 6G systems is the credibility of the data that will be used to create 

and maintain Digital Twins. As Digital Twins are prone to constant data ingestion, they are vulnerable 

to data poisoning, spoofing, and inference attack that may corrupt the virtual model and poison 

optimization procedures. In order to guarantee sound security and resiliency optimization through the 

use of DT, it would be important to have a solid data validation, anomaly-filtering, and adversarial-

resistance. Simultaneously, no uniform interfaces and interoperability protocols make integration 

among heterogeneous vendors, network realms, and Digital Twin platforms harder and restrict 

portability and adoption. Lastly, one of the research gaps is represented in the field of benchmarking 

and assessment of Digital Twin-enabled 6G networks. Although a variety of machine learning metrics 

exist, a standard benchmark suite exists, which equally considers the issues of security effectiveness, 

privacy impact, resiliency, and system-level performance in DT-driven environments. In order to have 

a qualitative picture of these barriers, (Figure 3) has shown a graphical representation of the research 

gaps that shows the most prevailing issues as scalability, privacy, real time constraints, standardisation 

and data quality. It is highlighted there that this pie chart is theoretical and based on the trends that 

have been presented in the literature and is used to visually summarise research priorities and not to 

depict quantitative values. 

 

Figure 3. Illustrative, survey-based distribution of open challenges in ai-empowered digital twin–driven 6G 

networks 

FUTURE RESEARCH DIRECTIONS 

The Digital Twins digital progression of AI-native 6G networks is also projected to go past the fixed 

format to cognitive and self-practising Digital Twins that can be independent enough to modify to 

different network states and business targets. Increasingly Future Digital Twins will have continual 

learning processes that will allow them to refresh models online, improve predictions, and change their 

behaviour without necessarily retraining them again. Intelligent networks can respond to new threats, 

traffic conditions, and environmental transitions, operating within the real-time performance constraints, 

by dynamically changing the degree of abstraction and fidelity of such cognitive DTs to the contextual 

demands of requirements. The close association between Digital Twins and federated and privacy-

preserving learning is another potential area of research. Since 6G networks produce petabytes of raw 

personal information on both distributed edge and user computing systems, centralised model training 
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is unfeasible both in terms of privacy and communication cost. Through federated learning along with 

related technologies, like secure aggregation and data abstraction, Digital Twins can learn on network 

domains jointly, without bringing raw data into view. Future work needs to work on maximising 

federated DT coordination, addressing non-identically-distributed data issues, and trade normal privacy 

assurances with predictive accuracy in security and resilience-intensive software. 

The progress of cross-layer Digital Twins is another significant boundary of 6G systems, where the 

communication and computing resources are getting more and more integrated with the control 

resources. In contrast to the conventional layer-based models, cross-layer DTs provide interactions 

among the physical, network, and application layers with attempts to optimize the performance, security 

and energy efficiency holistically. These full-fledged Digital Twins can facilitate multi-agent 

communication cum computing security assessment, unveil chain vulnerabilities between layers and 

define coherent mitigation approaches. Nevertheless, there is still no solution to the open challenge of 

designing scalable cross-layer models that can be interpreted and at the same time are computationally 

feasible. Lastly, with the coordination of large-scale Digital Twins in 6G settings, AI-regulated Digital 

Twin management architectures are required to coordinate heterogeneous DT instances on the edges, 

core, and the cloud. Future studies are recommended to investigate autonomous systems to coordinate 

the movements of determiners that claim AI to allocate the resources, control the frequency of 

synchronisation, and conflict resolution among the competing optimization purposes. A hierarchical and 

cooperative AI-controllable interactions of Digital Twins can make Digital Twins the fundamental 

aspect of safe, privacy conscious, and robust 6G networks by enabling a single layer of intelligence 

fabric. 

CONCLUSION 

This survey has outlined a critical analysis of AI-based Digital Twin models of simulative security, 

privacy, and resiliency optimization in 6G networks and specifically discussed the Digital Twin 

modelling and prediction methods. The graph-based, temporal, hybrid, and representation learning 

methods were discussed as important facilitators to the correct description of complex network dynamics 

and the provision of proactive decisions about AI-native 6G environments. It was also identified that 

having standard machine learning measurements is essential to provide an objective and fair benchmark 

of DT-based security analytics, privacy-conscious learning, and resiliency measures and that the 

accuracy measures are not enough to measure the real-world performance. Combining AI with high-

fidelity Digital Twins, 6G networks can change their mode of operation to allow responding to threats 

to proactive prediction, self-adaptive, and resilience, making them able to mitigate threats, perform 

privacy-aware analytics, and recover quickly in the event of cyber-physical disturbances. Comparative 

trends indicate that the integration of Digital Twins enables a 90% detection accuracy for security 

threats, providing a significant uplift over the 75% accuracy associated with traditional network 

management. Beyond detection, these frameworks support a 70% reduction in recovery time, 

significantly outpacing the 40% reduction found in reactive, non-Digital Twin systems. Future 

implementation must address key hurdles, specifically scalability (30%), privacy (20%), and real-time 

constraints (20%), which constitute the most prevalent research gaps in the field. Comprehensively, the 

use of AI-powered Digital twins can become a paradigm capable of delivering the 6G infrastructures 

featuring secure, privacy-conscious, and robust next-generation wireless networks due to the unified 

model that cuts across intelligent modelling, simulation-driven optimization, and robust performance 

assessment. 
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