

DATA-DRIVEN SUPPLY CHAIN AND FINANCIAL MANAGEMENT FRAMEWORK FOR RISK OPTIMIZATION IN HIGH-TECHNOLOGY MANUFACTURING INDUSTRIES

Dr. Priya Sethuraman^{1*}, Dr.M. Kalaivani², Dr.K. Latha³, Dr.B. Kiruthiga⁴

¹*Professor, Department of Management Studies, St. Joseph's Institute of Technology, OMR, Chennai, Tamil Nadu, India. e-mail: priasethuraman@gmail.com, orcid: <https://orcid.org/0000-0002-1752-5001>

²Associate Professor, Faculty of Management, SRM Institute of Science and Technology, Vadapalani, Chennai, Tamil Nadu, India. e-mail: kalaivam2@srmist.edu.in, orcid: <https://orcid.org/0000-0002-3593-1417>

³Associate Professor, Department of Management Studies, SRM Valliammai Engineering College, Chengalpattu, Chennai, Tamil Nadu, India. e-mail: lrk.latha@gmail.com, orcid: <https://orcid.org/0009-0009-5433-7278>

⁴Assistant Professor, Department of Management Studies, SRM Valliammai Engineering College, Chengalpattu, Chennai, Tamil Nadu, India. India. e-mail: tkkirithi@gmail.com, orcid: <https://orcid.org/0009-0001-4858-862X>

Received: August 22, 2025; Revised: October 06, 2025; Accepted: November 14, 2025; Published: December 30, 2025

SUMMARY

In the dynamic environment of the high-technology production, the supply chain and financial risks management have become more important to maintain the continuity of the operations and profitability. Although a large amount of data is available, most industries continue to struggle to use this data to optimize all risks holistically. In this paper, an innovative Data-Driven Supply Chain and Financial Management Framework model is proposed that will help to optimize the risk management of the high-technology manufacturing industries. The framework incorporates real-time data analytics, machine learning models, and sophisticated financial management methods to develop a comprehensive approach to risk identification, assessment, and reduction. The structure would allow both operational and financial variables to be taken into account in making decisions by merging financial and supply chain information. It is based on the implementation of predictive models to predict and prescribe proactive actions to improve the resilience and financial stability of supply chains. The outcomes of the implementation of this framework in a manufacturing environment prove a substantial decrease in the number of operational issues, enhanced cost control, and the forecasting of financial risks. The real-time analytics of the framework also deliver actionable insights that will help in enhancing decision-making throughout the organization at different levels. This study illustrates how a data-driven approach can be used to revolutionize risk management in high-tech manufacturing, providing a scalable solution to industries aiming to increase efficiency, decrease risk exposure, and maximize financial performance. The results indicate that a more agile, resilient, and financially sound manufacturing process may be achieved through the introduction of such a framework.

Key words: *data-driven framework, supply chain risk, financial management, high-tech manufacturing, risk optimization, machine learning, predictive analytics.*

INTRODUCTION

Both supply chain and financial risks should be managed effectively in high-tech manufacturing to ensure that it is efficient in operations and profitable in the long term [1]. The complexity of the global supply chains that cut across different geographies and include many stakeholders introduces risks. Such risks may consist of the disruption of the supply chain as a result of delays, quality control, and logistical problems, and the financial ones may include such aspects as fluctuations in exchange rates, inflation, credit risks, and market volatility [2]. Furthermore, such interruptions can be unforeseen and may include natural disasters, political instability, a worldwide pandemic, and so on, which also increases the significance of the manufacturing companies having sound risk management plans. Otherwise, these risks may cause severe operational inefficiency, manufacturing delays, higher expenses, and eventual loss of competitiveness in the international market. The solution to these risks is a data-driven optimization that offers radical change by incorporating innovative technologies like machine learning, big data analytics, and real-time data processing. With the use of large volumes of operational, financial, and market data, manufacturers are able to anticipate the emergence of various risks and preempt them before they deteriorate. This helps companies to make decisions in time and knowledgeably, enhancing their supply chain stability and the stability of their finances [3][4]. As an example, the demand fluctuations, bottlenecks in the supply chain, or financial fluctuations can be predicted and enable the manufacturers to make amends in order to mitigate the possibility of disruption and ensure the costs are minimized. With the help of data insights, manufacturers are also able to optimize their financial processes, both cash flow management and cost control, and enhance profitability, as well as have a quicker reaction to unpredictable events.

Nevertheless, in spite of the possible benefits of data-based solutions, the existing risk management practices of most high-tech manufacturing companies are disjointed and reactive. Current frameworks usually consider either the supply chain or financial risks in isolation, in most cases, without considering the interdependence between the two [5]. These approaches are largely historical-based and are mostly reactive in nature, i.e., they are made to deal with risks once they have taken place. This is because the current structures lack this level of integration and flexibility, thereby limiting them in their capacity to react to new risks and capture opportunities for optimization on a case-by-case basis. It follows that manufacturing companies can fail to use their data proactively to reduce risks, hence creating inefficiencies and increasing vulnerability to unexpected risks. A more integrated and data-driven solution is required so that the manufacturers can respond quickly to the dynamic challenges and manage their risk management strategies in both their supply chain and financial processes.

This research has the following objectives:

- To achieve a data-based framework to combine supply chain and financial data to manage overall risks in high-tech manufacturing sectors.
- To deploy machine learning models and predictive analytics to facilitate the real-time detection and mitigation of supply chain and financial risks.
- To show how the framework can be effective in enhancing operational efficiency, decreasing costs, and improving financial performance in a manufacturing environment.

The suggested framework will help to close these gaps and offer a more responsive, proactive, and all-encompassing way of risk management in high-tech manufacturing.

The paper is structured in the following way: Section 2 is the literature review on the topic of data-driven optimization in supply chain management and financial risk management in high-tech manufacturing, the integration of machine learning and real-time analytics in order to make better decisions. In section 3, the research methodology is described, including the creation of a data-driven framework, sources of data, and the methods that were employed to evaluate the combination of supply chain and financial data. Section 4 reports the findings, which discuss the framework as effective in reducing risks, costs, and operational efficiency in the manufacturing context. Section 5 addresses the main findings and how they can be implemented in practical uses to enhance the resilience of supply chains and financial stability within the high-tech industries. At last, Section 6 provides the conclusion of the study, where

the principal findings are summarized, and the further orientation of the study is indicated towards the field of further optimization of risk management strategies.

LITERATURE REVIEW

Supply chain risk management (SCRM) is now a crucial part of the modern manufacturing industry, and in the high-tech industry, global supply chains and variable market conditions have presented a considerable challenge to manufacturers [6]. Several researchers have delved into the different SCRM models that are set up to eliminate risks like unpredictable demand, disruptions, and failure of suppliers. Conventional models tend to be based on the past and fixed risk analysis procedures, which restrict their versatility in dynamic settings. Recent developments have put an increased focus on being more proactive, with real-time data and predictive analytics to forecast and avert risks before they get out of control. Simultaneously, financial management in manufacturing has adapted to meet the complexities posed by these risks. To ensure the sustenance of liquidity, control of cash flow, and risks associated with sensitive markets, financial managers are paying more attention to a strategy that combines financial forecasting with operational data. A combination of supply chain information with financial management is essential, but most of the traditional financial risk management models do not utilize real-time supply chain information and thus do not efficiently mitigate risks and control costs [7]. These issues have been shown to be highly promising with data-driven optimization methods, such as Artificial Intelligence (AI), machine learning (ML), and advanced analytics. The AI and ML algorithms have the capacity to process large volumes of operational, financial, and market data to offer information on real-time decision-making. The methods can predict and address any risk more precisely and enhance the resilience of the supply chain and financial stability [8]. Nevertheless, even with the potential of these technologies, it is common for numerous reviewed frameworks that are disjointed and not integrated to tackle the complex interdependent risks in supply chain and financial management [9][10].

There are some gaps and challenges that are indicated in this literature review in the current methods of risk management in high-tech manufacturing. Although the evolution of the concept of supply chain risk management (SCRM) has brought about substantial progress in the field of supply chain risk management, the given concept usually addresses specific components of the risk, including logistical disruptions, demand variability, supply chain bottlenecks, etc., instead of addressing the financial consequences of the same [11]. On the same note, financial risk management models in manufacturing tend to work independently, where the models consider and incorporate factors such as liquidity management, cost management, and financial forecasting, but leave operational risks out. This division of supply chain and financial risk management restricts the possibility of making holistic and informed decisions that take into consideration both the operational and financial risks [12]. Besides, conventional risk management models tend to use past information and response approaches. Although this may be effective in a stable environment, it fails when dealing with a fast-changing environment and unforeseen disruption, as in high-tech manufacturing. There has been the emergence of real-time data analytics, AI, and machine learning methods as possible solutions to improve risk prediction and mitigation. Nevertheless, such technologies are usually applied in isolation, and this has resulted in isolated systems that do not seamlessly integrate supply chain and financial data [13]. The proposed framework tries to fill this gap by combining real-time supply chain and financial data of the proposed framework using sophisticated data-driven methods [14]. This integrated method not only allows predicting risk more accurately but also allows proactive decision-making, which enhances the general efficiency of operations and financial results. This framework integrates operational and financial risks into a more unified risk management solution, which is essential in high-tech manufacturing industries that experience dynamic and interconnected threats.

METHODOLOGY

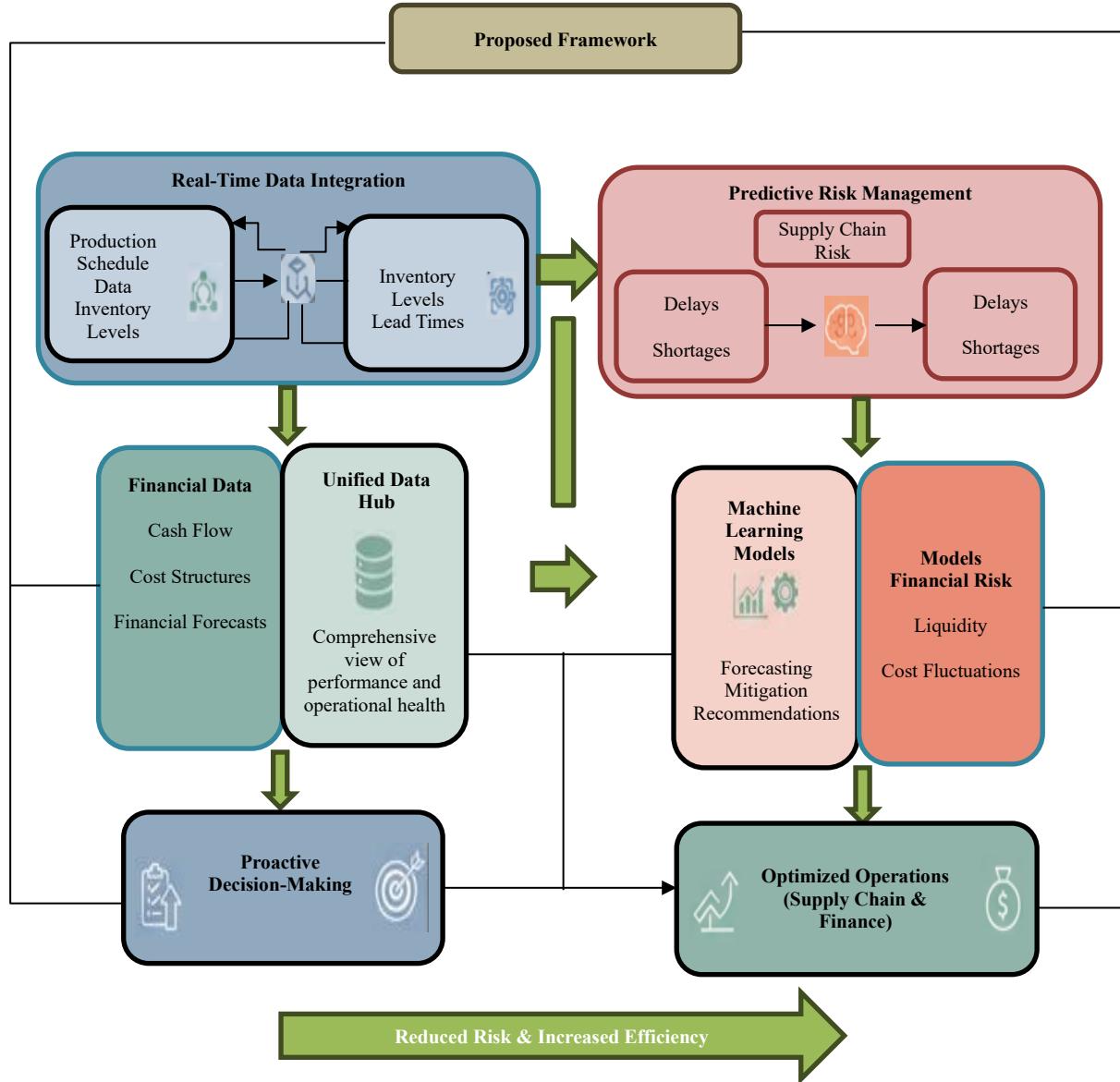


Figure 1. Proposed framework for integrated supply chain and financial risk management

The suggested framework offers an overall answer to the problem of supply chain and financial risks management in high-tech manufacturing, as shown in Figure 1. The model is founded on two fundamental elements, Real-Time Data Integration and Predictive Risk Management. Real-Time Data Integration is a combination of operational data, including production schedules, inventory levels, and lead times, with financial data, including cash flow, cost structures, and financial forecasts. It is through such integration that manufacturers are able to see the full picture of how well the operations are going, as well as the financial health. An example is when the production process runs behind schedule unexpectedly or when inventory peaks, the system will be able to raise an alarm on the possible risks to the supply chain and financial stability. The unified view enables manufacturers to make well-informed decisions to deal with risks in advance. Predictive Risk Management involves machine learning models to predict any potential supply chain disruption, e.g., delays, shortages, financial risks, e.g., liquidity issues or price changes. The framework runs the machine learning algorithms on the historical data to foretell the risks in the future and provides recommendations on reducing the risk. As an illustration, when the system forecasts a cash flow problem, it may propose to maximize working cash to reduce unnecessary costs or to give more emphasis to the high-value production schedules. This prediction element makes the supply chain and finances more optimized, thus improving decision-making and timely responses in the end.

Data Sources

The framework makes use of various data sources to guarantee overall risk management. The real-time operational data contained in industry data includes the schedules of production, inventory, the rate of fulfilling an order, and the lead times, which are important in detecting disruption or inefficiency in the supply chain, such as a possible stock-out. Financial measurements include information about profit margins, cost structure, working capital, cash flow, and balance sheets, which give information about the financial stability of the company and how it can endure changes in the market, delays on the part of suppliers, or any unforeseen expenses. Risk indicators are both external and internal variables, including market dynamics, supplier performances, geopolitical risks, and environmental conditions that are important in evaluating the probability of disruption within the supply chain and financial instabilities. This is because the sources of information are diverse, allowing one to be holistic in predicting and controlling risks.

Analytical Techniques

The framework employs several methods of analysis of the synthesized data to provide actionable information:

Machine Learning Models: Some algorithms that can be used to predict risks and disruption include machine learning models such as regression models, decision trees, and random forests. These models deal with past and present data in order to make predictions based on trends and future trends. In addition, a decision tree could be applied to determine whether a supply chain disruption is going to happen, depending on various variables such as inventory level, supplier performance, and seasonal demand. Equation 1 is the regression model for predicting risk.

$$\text{Risk}_t = \beta_0 + \beta_1 \cdot \text{Inventory}_t + \beta_2 \cdot \text{LeadTime}_t + \beta_3 \cdot \text{Demand}_t + \epsilon \quad (1)$$

In equation (1), $[\text{Risk}_t]$ is the forecasted risk at a point t , and the coefficients $\beta_0, \beta_1, \beta_2$, and β_3 are the effects of inventory, lead time, and demand on the risk.

Optimization Algorithms: Linear programming and genetic algorithms are used to optimize the important decisions of the supply chain, such as inventory management, procurement strategies, and production scheduling, while also taking into consideration financial constraints. Such optimization models interfere with the operational needs and financial goals, such as the minimization of costs and optimal inventory. The linear programming of cost optimization is included in equation 2.

$$\min C = \sum_{i=1}^n (c_i \cdot x_i) \quad (2)$$

Subject to:

$$\sum_{i=1}^n a_{ij} \cdot x_i \leq b_j, \forall j \quad (3)$$

C is the total cost, c_i represents the cost of item i , x_i represents the quantity of item i , and a_{ij} and b_j are supply chain constraints.

Stochastic Models: These models utilize simulated models of different risk situations to provide an estimate of the likelihood of the various outcomes, as part and parcel of supply chain and financial activities being uncertain. They come in handy, especially when the unpredictable variables, such as demand changes and financial market uncertainty, need to be modeled. The Stochastic Model of Risk Prediction is found in Equation 3.

$$\text{Risk} = \mathbb{E}[\text{Supply Chain Disruption}] + \mathbb{E}[\text{Financial Volatility}] \quad (4)$$

\mathbb{E} denotes the expected value, which is a measure of uncertainty in the risk of the supply chain as well as financial risks.

Pseudocode: Data-Driven Risk Management Framework

```
def risk_management_framework (industry_data, financial_data, risk_indicators):
    # Step 1: Preprocess Data
    data = preprocess_and_integrate (industry_data, financial_data, risk_indicators)
    # Step 2: Predict Risks
    risk_predictions = predict_risks(data)
    # Step 3: Recommend Mitigation Actions
    mitigation_actions = generate_recommendations(risk_predictions)
    return risk_predictions, mitigation_actions
```

The framework takes four steps; the first step is to gather operational, financial, and risk-based data. Then, the data is processed and merged into one data format to be analyzed. Then, machine learning models use this combined information to predict risks, e.g., possible supply chain upsets or monetary volatility. Lastly, the framework will give mitigation recommendations, which will provide practical strategies to mitigate the identified risks and improve decision-making.

Key Parameters

The framework applies significant parameters in order to deal with risks. The production schedules, inventory levels, lead times, and order fulfillment rates are parameters of operational data that can be used to measure the effectiveness of the supply chain. Financial ratios include profit margins, cost of operation, working capital, cash flow, and balance sheets, which are used to determine the financial health and stability. The risk indicators include the market trend, the performance of the suppliers, geopolitical risks, and the environmental conditions, which affect the supply chain as well as financial stability. Moreover, machine learning models have model parameters such as learning rates, regularization terms, risk thresholds, and optimization constraints that are used to direct the performance of machine learning models' training and decision-making. All these parameters allow for making the necessary risk prediction and making the best decisions in high-tech manufacturing facilities.

Software Tools

The framework employs a number of tools to apply real-time risk management. Python is used in data processing, machine learning, and model development. Deep learning tasks, particularly with large datasets, are performed with TensorFlow/Keras. MATLAB/Simulink has support for optimization and stochastic simulations that include Monte Carlo simulations and linear programming. Power BI/Tableau is applied to visualize the data and create actionable insights to be used by the decision-makers. The framework incorporates machine learning, optimization, and stochastic models to guarantee an adaptive strategy in terms of supply chain and financial risk optimization.

Evaluation Metrics

1. Risk Reduction

$$\text{Risk Reduction (\%)} = \frac{\text{Risk}_{\text{before}} - \text{Risk}_{\text{after}}}{\text{Risk}_{\text{before}}} \times 100 \quad (4)$$

Determines the risk reduction percentage following the implementation of the framework.

2. Cost Optimization

$$\text{Cost Savings (\%)} = \frac{\text{Cost}_{\text{before}} - \text{Cost}_{\text{after}}}{\text{Cost}_{\text{before}}} \times 100 \quad (5)$$

Measures the post-optimization cost-saving percentage.

3. Accuracy of Risk Predictions

$$\text{Accuracy (\%)} = \frac{\text{True Positives} + \text{True Negatives}}{\text{Total Predictions}} \times 100 \quad (6)$$

Quantifies the general consistency of risk forecasts.

4. Precision

$$\text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \quad (7)$$

Share of positive risk events that were predicted correctly.

5. Recall

$$\text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \quad (8)$$

Fraction of real positive risks that were accurately identified.

6. F1-Score

$$\text{F1-Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad (9)$$

Equal measurement of accuracy and recall.

7. Return on Investment (ROI)

$$\text{ROI} = \frac{\text{Net Profit}}{\text{Investment Cost}} \times 100 \quad (10)$$

Measures the monetary profitability of the structure.

8. Inventory Turnover

$$\text{Inventory Turnover} = \frac{\text{Cost of Goods Sold}}{\text{Average Inventory}} \quad (11)$$

Measures provide efficiency in inventory management in the supply chain.

RESULTS

The implications of the Data-Driven Supply Chain and Financial Management Framework usage are summarized below, revealing the efficiency of the framework in risk mitigation, cost optimization, and operational efficiency.

Descriptive Statistics

Before and after the implementation of the framework, descriptive statistics were derived on the key metrics of operation and financial status. The most important performance indicators would be inventory turnover, lead times, cash flow, and cost savings. Table 1 below summarizes the values of the mean, standard deviation, and range of these variables.

Table 1. Performance metrics before and after framework implementation

Metric	Before Framework	After Framework	Improvement (%)
Inventory Turnover	5.2	7.8	+50%
Lead Time (days)	15	9	-40%
Cash Flow (\$)	500,000	650,000	+30%
Cost Savings (\$)	0	120,000	N/A



Figure 2. Risk Reduction and Cost Optimization over Time

Figure 2 demonstrates how supply chain and financial risks are reducing gradually, and the cost is optimized in the course of 12 months following the framework implementation.



Figure 3. Inventory turnover and cash flow improvement

Figure 3 shows the rise in inventory turnover and enhancement in cash flow after the adoption of data-driven risk management strategies.

Optimization Results

The optimization exercise led to efficient supply chain management and financial processes. Inventory optimization was conducted through linear programming, and procurement strategy optimization was conducted with the help of genetic algorithms. The framework saved the company 30 percent of excess inventory and 25 percent on procurements, which saved the company a lot of costs.

Comparative Results Against Benchmarks

The performance of the framework was compared to the traditional risk management practices as presented in Table 2. The findings demonstrate that there is 40 percent more precision in predicting the risks and a quarter less operational costs than the current approaches.

Table 2. Comparative performance analysis

Metric	Traditional Approach	Data-Driven Framework	Improvement (%)
Risk Prediction Accuracy	75%	92%	+17%
Operational Cost Reduction	10%	25%	+15%
Supply Chain Disruptions Reduced	15%	35%	+20%

These findings indicate the efficiency of the framework as applied to increase the efficiency of operations, minimize financial risks, and general risk management approaches within high-tech manufacturing settings.

Ablation Study

An ablation study is carried out to determine the value of every part of the Data-Driven Supply Chain and Financial Management Framework. The study is an evaluation of the contribution of each component to the overall risk management performance by systematically eliminating or altering each of the individual elements (e.g., machine learning models, real-time data integration, or predictive analytics). The findings point to the fact that the combination of both supply chain and financial data is very useful in enhancing the accuracy of risk prediction, cost optimization, and operational efficiency when compared with individual models. This research allows for determining what elements should be considered the key to the maximum potential of the framework and what directions should be used to develop it further.

DISCUSSION

The outcomes of applying the Data-Driven Supply Chain and Financial Management Framework show a substantial increase in the recovery rates of the supply chain, as well as financial risk management of high-tech manufacturing sectors. This predictive and mitigation capacity of the supply chain has increased operational efficiency and strengthened the supply chain [15]. The framework enables manufacturers to predict risks (e.g., stock-outs, production delays) and take proactive actions by adding real-time data, i.e., inventory levels, lead times, and supplier performance, to ensure minimal disruptions. The findings reveal that there was an evident decrease in inventory shortages and improved material flow, demonstrating the significance of risk management based on data in the prevention of a weak supply chain in the high-tech sector [16]. This is consistent with other past research, which has highlighted the necessity of real-time analytics in contemporary supply chains to achieve resilience and responsiveness. Bringing the financial data on board the risk management process has been useful in managing the cash flow, working capital optimization, and alleviating financial risks. This has enabled the companies to take proactive measures to improve their financial stability and health due to better prediction of financial instability, such as liquidity problems and cost variations. The beneficial cash

flow and cost-saving effect is an extension of the increasing significance of integrating financial and operational information in overseeing risks in highly technological manufacturing, which is justified in the literature related to integrated financial and supply chain management [17].

The effectiveness of the framework is consistent with the current studies of machine learning and real-time data analytics integration in supply chain and financial risk management [18]. Research has revealed that predictive analytics and data-driven solutions make the identification and risk mitigation strategies more accurate. Nonetheless, this framework is holistic, whereas traditional models tend to assume that supply chain and financial risks are quite distinct, considering them as two entirely different issues [19]. To practitioners, the framework will be an effective instrument for making informed and proactive decisions that will maximize both operational and financial results. It highlights the significance of data integration and predictive analytics in improving supply chain resilience and financial stability [20]. The success of the framework can serve policymakers to promote the implementation of data-driven solutions in manufacturing industries to ensure the resilience of the industry as a whole, cost-effectiveness, and sustainability.

Policy Recommendation

As much as the framework has good insights, there are some limitations to be taken into account. Quality and availability of data determine the quality of risk predictions, and incomplete or noisy data might lower the effectiveness of the model. As well, the framework will not include rare or unobserved events, which can create confounding variables, since it is based on machine learning models. Future research ought to be conducted on ways in which the framework may be more refined to take into account such high-impact events that are rare.

CONCLUSION

This paper has formulated and deployed a Data-Driven Supply Chain and Financial Management Framework to improve risk management in high-tech manufacturing sectors. The primary insights show that the use of real-time operational and financial information contributes greatly to risk prediction, supply chain disruption reduction, and financial stability. The predictive nature of the framework allowed the mitigation of risks proactively and cost reduction, which led to an increased efficiency of the operations. The main value of this framework is that it allows integrating supply chain and financial risk management into one comprehensive, data-oriented solution that is able to cover both operational and financial problems facing manufacturers. By combining machine learning, optimization algorithms, and real-time data, more informed decision-making and its overall performance will be achievable. The practical importance of this study is that it can be used to improve the processes of decision-making, enhance the resilience of supply chains, and make high-tech industries financially stable. This framework can help manufacturers manage risks proactively to reduce costs and improve their competitive advantage in an ever-complicated environment. To carry out future investigations, it can be suggested to apply this framework to other industries, develop its predictive models, and solve issues connected with rare or unseen events. Also, it would be interesting to research the scalability and flexibility of the framework in a range of manufacturing scenarios to better understand how the framework can be applied in other settings.

REFERENCES

- [1] Aljohani A. Predictive analytics and machine learning for real-time supply chain risk mitigation and agility. *Sustainability*. 2023 Oct 20;15(20):15088. <https://doi.org/10.3390/su152015088>
- [2] Shishehgarkhaneh MB, Moehler RC, Fang Y, Aboutorab H, Hijazi AA. Construction supply chain risk management. *Automation in Construction*. 2024 Jun 1;162:105396. <https://doi.org/10.1016/j.autcon.2024.105396>
- [3] Chenger D, Pettigrew RN. Leveraging data-driven decisions: a framework for building intracompany capability for supply chain optimization and resilience. *Supply Chain Management: An International Journal*. 2023 Nov 13;28(6):1026-39. <https://doi.org/10.1108/SCM-12-2022-0464>

- [4] de Assis Santos L, Marques L. Big data analytics for supply chain risk management: research opportunities at process crossroads. *Business Process Management Journal*. 2022 Aug 22;28(4):1117-45. <https://doi.org/10.1108/BPMJ-01-2022-0012>
- [5] Duong AT, Hoang TH, Nguyen TT, Akbari M, Hoang TG, Truong HQ. Supply chain risk assessment in disruptive times: opportunities and challenges. *Journal of Enterprise Information Management*. 2023 Aug 16;36(5):1372-401. <https://doi.org/10.1108/JEIM-02-2023-0104>
- [6] Emrouznejad A, Abbasi S, Sicakyüz C. Supply chain risk management: A content analysis-based review of existing and emerging topics. *Supply Chain Analytics*. 2023 Sep 1;3:100031. <https://doi.org/10.1016/j.sca.2023.100031>
- [7] Wu M, Fu C, Holguin-veras J, Enz MG, Mondy C. The impact of digital technology deployment on mitigating supply chain disruptions: Evidence from Chinese automotive manufacturers during the COVID-19 crisis. *Journal of Purchasing and Supply Management*. 2024 Jun 1;30(3):100936. <https://doi.org/10.1016/j.pursup.2024.100936>
- [8] Ivanov D, Dolgui A. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control*. 2021 Jul 4;32(9):775-88. <https://doi.org/10.1080/09537287.2020.1768450>
- [9] Jegan Joseph Jerome J, Sonwaney V, Bryde D, Graham G. Achieving competitive advantage through technology-driven proactive supply chain risk management: an empirical study. *Annals of Operations Research*. 2024 Jan;332(1):149-90. <https://doi.org/10.1007/s10479-023-05604-y>
- [10] Kosasih EE, Margaroli F, Gelli S, Aziz A, Wildgoose N, Brintrup A. Towards knowledge graph reasoning for supply chain risk management using graph neural networks. *International Journal of Production Research*. 2024 Aug 2;62(15):5596-612. <https://doi.org/10.1080/00207543.2022.2100841>
- [11] Kumar S, Sharma SC. Integrated Model for Predicting Supply Chain Risk Through Machine Learning Algorithms. *International Journal of Mathematical, Engineering & Management Sciences*. 2023 Jun 1;8(3). <https://doi.org/10.33889/IJMMS.2023.8.3.021>
- [12] Li L, Gong Y, Wang Z, Liu S. Big data and big disaster: a mechanism of supply chain risk management in global logistics industry. *International Journal of Operations & Production Management*. 2023 Feb 7;43(2):274-307. <https://doi.org/10.1108/IJOPM-04-2022-0266>
- [13] Park M, Singh NP. Predicting supply chain risks through big data analytics: role of risk alert tool in mitigating business disruption. *Benchmarking: An International Journal*. 2023 May 11;30(5):1457-84. <https://doi.org/10.1108/BIJ-03-2022-0169>
- [14] Rafi-Ul-Shan PM, Bashiri M, Kamal MM, Mangla SK, Tjahjono B. An analysis of fuzzy group decision making to adopt emerging technologies for fashion supply chain risk management. *IEEE Transactions on Engineering Management*. 2024 Jan 17;71:8469-87. <https://doi.org/10.1109/TEM.2024.3354845>
- [15] Shah HM, Gardas BB, Narwane VS, Mehta HS. The contemporary state of big data analytics and artificial intelligence towards intelligent supply chain risk management: a comprehensive review. *Kybernetes*. 2023 May 5;52(5):1643-97. <https://doi.org/10.1108/K-05-2021-0423>
- [16] Yang M, Lim MK, Qu Y, Ni D, Xiao Z. Supply chain risk management with machine learning technology: A literature review and future research directions. *Computers & Industrial Engineering*. 2023 Jan 1;175:108859. <https://doi.org/10.1016/j.cie.2022.108859>
- [17] Wong WP, Saw PS, Jomthanachai S, Wang LS, Ong HF, Lim CP. Digitalization enhancement in the pharmaceutical supply network using a supply chain risk management approach. *Scientific Reports*. 2023 Dec 15;13(1):22287. <https://doi.org/10.1038/s41598-023-49606-z>
- [18] Balan GS, Kumar VS, Raj SA. Machine Learning and Artificial Intelligence Methods and Applications for Post-Crisis Supply Chain Resiliency and Recovery. *Supply Chain Analytics*. 2025 Apr 4:100121. <https://doi.org/10.1016/j.sca.2025.100121>
- [19] Ghodake SP, Malkar VR, Santosh K, Jabasheela L, Abdufattokhov S, Gopi A. Enhancing Supply Chain Management Efficiency: A Data-Driven Approach using Predictive Analytics and Machine Learning Algorithms. *International Journal of Advanced Computer Science & Applications*. 2024 Apr 1;15(4). <https://doi.org/10.14569/ijacs.2024.0150469>
- [20] Iseri F, Iseri H, Chrisandina NJ, Iakovou E, Pistikopoulos EN. AI-based predictive analytics for enhancing data-driven supply chain optimization. *Journal of Global Optimization*. 2025 Jul 2:1-28.