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SUMMARY 

In this work, a new optimization approach for the exploitation and smooth integration of hybrid 

renewable sources (HRs), including PV solar/wind turbines in addition to a dynamic reconfiguration 

process of electricity distribution microgrids, is proposed. A crucial novelty of this work is the definition 

of a multi-scenario optimization framework that allows to compare devices at various levels (of 

complexity) across different system conditions, and which has not been thoroughly investigated yet in 

the literature. Further, the study presents one of the most detailed and operational-realistic representations 

of an IEEE 84-bus Taiwan Power Company (TPC) distribution system model (in a unique dataset 

containing exact switch status, impedance properties, and power injection location). This network model 

serves as a scalable benchmark for grid optimization studies and utility-scale PV deployment. Moreover, 

the proposed method adopts a variant of particle swarm optimization algorithm to minimize the 

operational cost along with the variance-based penalty function in consideration of uncertainty 

associated with renewable power generation. This combination of cost effectiveness and uncertainty 

management in the context of a single objective function increases the stability and flexibility in grid 

functions. Then, the approach is verified for three operational modes: a base scenario without any 

renewable integration, a PSO-tuned scenario with PV and WT but ignoring network reconfiguration, and 

an integrated (renewables together with reconfiguration). The final formation achieved after optimization 

can minimize the power losses from 4.924 MW to around 0.002 MW and reduce the operational cost to 

$1.954/MWh, as reported in results. Such results validate the effectiveness of our proposed strategy for 

facilitating cost-efficient and robust operation of smart grid. 

Key words: renewable energy integration, IEEE 84-bus system, multi-scenario simulation, network 

reconfiguration, optimization algorithm, uncertainty modeling. 
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Table 1: List of signs and symbols 

List of signs and symbols 

Ci(xi) Cost function for each microgrid or participant p Air density 

λ Weight factor for uncertainty variance penalty v Wind speed 

Var(∆PRE) Variance of the uncertainty in renewable energy Cp Turbine power factor 

η
PV

 Efficiency of the PV module Pk,t
net  

 

Represent the power flow in the 

reconfigurable network. 

A Area of the PV module Pik,t Active power flow from node i to node k 

at time t. 

G Solar irradiance (W/m²) γ
ik,t

 A binary variable (0 or 1) related to the 

status of the connection or line between 

node i and node k at time t 

θ Angle of incidence of sunlight on the panel Q
k,t

net Net reactive power at node k at time t. 

Uk,t Voltage magnitude at bus k at time t. Q
ik,t

 Reactive power flow from node i to node 

k at time t. 

Ui,t Voltage magnitude at bus i at time t. xik Reactance of the line/branch connecting 

bus i to bus k. This is also typically a 

fixed parameter of the line. 

rik Resistance of the line/branch connecting bus i to 

bus k. This is typically a fixed parameter of the 

line. 

Ui
min Minimum permissible voltage magnitude 

at bus i. 

Ci,t
Gen Total generation cost for component i at time t. Ui

max Maximum permissible voltage 

magnitude at bus i. 

λi
MT

 Cost coefficient (or price) for electricity 

generated by a specific type of generator MT 
Hi,t

TSC Capacity or amount related to "TS" 

λi
BS

 Cost coefficient (or price) for buying/selling 

electricity from a specific "BS" source 
ki

TS
 Cost coefficient (or penalty) related to 

"TS" 

Hi,t
TSD Demand or discharge related to "TS" r1 and 

r2 

takes values randomly between 0 and 1. 

vi
(t+1) the particle's velocity p

i
best best particle found position 

w factor that determines how long the current 

motion will continue based on the previous 

velocity.c1 and c2 are acceleration coefficients 

gbest position of the swarm 

xi
(t) the position of particle number " i " at time 

instant (t). 
vi

(t+1) velocity of particle"i " at the next time 

instant (t+1) 

Table 1 provides the different signs, symbols, and their respective definitions that are applied throughout 

the paper in the description of important parameters of optimizing the hybrid solar-wind integration in 

smart grids. These are symbols that form part of the mathematical and operation structure such as 

variables of power flow, energy generation and optimization methods used in the system. 

INTRODUCTION 

Motivation 

With the increase of distributed generators in power grid, e.g., photovoltaic (PV) and wind turbines 

(WT) [1], [2], the modern electrical systems need DERs as the cornerstones. Rationalizing trading and 

transactions in modern, decentralized smart microgrids using advanced energy trading algorithms. For 

stability, sustainability, energy independence and perfectly efficient energy trading with the grid, the 

optimal distribution is necessary at all times which is referred to as Network Reconfiguration (NR) [3], 

[4]. NR is a pivotal process, which transmits and exchanges or redistributes the power lines in order to 

maximize energy transfer within the network system and upgrade network wide performance. NR is 

constantly looking for the best network parameters to save operational cost, decrease transmission loss, 

and increase energy efficiency [5]. In recent studies, guided by the need of dealing with the much more 

complex issues associated to NR algorithms, optimization techniques have been introduced in order to 

find optimal reconfigurations that make power flow as directionless and smooth as possible [6], [7]. 

However, despite the enormous potential of renewable generation, on-grid integration of these sources 

is difficult because they are inherently uncertain [8]. This unpredictability makes it difficult to maintain 
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the stability, efficiency and reliability of the network. Particle Swarm Optimization (PSO) algorithms 

have demonstrated the capability to address the challenges of integrating renewable energy sources into 

distribution networks [9]. 

LITERATURE REVIEW 

Recent studies have proposed various energy management strategies for operating hybrid microgrids 

(MGs) integrating PV and WT systems. These studies primarily aim to analyze the cost-effectiveness, 

fairness in energy distribution, and data privacy aspects of battery energy storage systems (BESS) [10], 

[11]. As shown in Table 2, researchers in this field have focused on enhancing real-time demand 

response and management in off-grid systems [12], developing self-optimized intelligent control 

systems for hybrid renewable energy resources integration [13], suggesting effective and flexible energy 

management for hybrid microgrids [14], and optimizing grid-connected systems through shared energy 

storage and cooperative alliances. In order to reduce operational costs and reduce supply-demand 

instability, the modern PSO optimization algorithms are used to manage the renewable energy 

distributions using scenario analysis and modified power distribution systems [16]. An enhanced Walrus 

PSO algorithm has been proposed to significantly reduce costs and voltage fluctuations, while improving 

stability under various uncertainty conditions [17].  Another notable advancement involves a hybrid 

microgrid integration method aimed at reducing power losses and improving voltage profiles in radial 

distribution networks [18]. An improved PSO algorithm for integrating renewable energy sources was 

developed in [19]. This model enables optimal planning of PV and WT farms by incorporating multiple 

units and inverters. Other contributions in recent research indicated that in multiple ways the study can 

improve sustainability, resilience, and efficiency by improving the energy system operations and 

integrating hybrid renewable energy sources. An advanced PSO algorithm for distributed energy 

systems, combining demand information with generation sources of diverse types, has been developed 

by the authors in [20], and the objectives are to reduce operating costs and fluctuations in energy. 

Another study [21] proposed a novel optimization algorithm tailored to dynamic market conditions and 

distributed energy resources, aiming to maximize profits and system flexibility. While a novel grey wolf-

based PSO hybrid optimization was introduced by the authors in [22], it depends on the multistage 

bidding strategies to enhance the performance of the smart MGs and virtual power plant profitability. 

Predictive models of CO2 emissions and carbon allocation systems utilizing PSO-enhanced neural 

networks are also part of the effort to match power grids with peak carbon targets [23]Furthermore, for 

multi-objective optimization problems in distributed power generation systems, a combined DE-layer 

deep learning model is proposed with the improved PSO algorithm considering reliability, 

environmental effectiveness and economic cost [24]. Thereafter, two-level optimization methods, 

namely PSO and MWW O (PSO)-based method have been proposed to improve power quality and cost 

effectiveness in hydrogen-based hybrid microgrids [25].  Recent advancements have focused 

significantly on uncertainty-aware methodologies and robust scheduling mechanisms. For instance, 

robust day-ahead microgrid scheduling under demand fatigue was explored in [26], while blockchain-

based peer microgrid auctions with integrated battery control were implemented under uncertainty in 

[27]. Intraday market participation with predictive uncertainty control was developed for residential 

buildings in [28], and resilient mobile storage strategies were proposed for uncertain grid environments 

in [29]. Self-supervised learning and ensemble methods were applied to steam flow forecasting under 

uncertainty in [30], while multi-microgrid scheduling incorporating mobile fuel cell storage and hybrid 

stochastic-robust frameworks were proposed in [31]. Hierarchical multi-agent EV control systems were 

enhanced using uncertainty-aware critic models in [32]. Study [33] explored demand response strategies 

based on deep learning for short-term optimization in renewable microgrids. Other works targeted 

uncertainty-aware mobile edge computing, capacitor and DSTATCOM placement using novel 

optimizers in distribution networks [35], and multi-agent reinforcement learning for active voltage 

control [36]. Furthermore, efforts toward carbon-cost dispatch and integrated energy systems were 

studied in [37], and data-driven energy sharing among microgrids was emphasized in [38]. Scheduling 

of multi-use battery storage systems with uncertainty models was addressed in [39]. Multi-energy hubs 

with emission and uncertainty considerations have been tackled in [40], and harmonic reduction and 

uncertainty mitigation via soft open point allocation are proposed in [41], and harmonic reduction and 

uncertainty mitigation via soft open point allocation was proposed in [42]. Transformer-based 

uncertainty-aware models for peer energy trading are explored in [43], and robust energy management 
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of microgrids under uncertainty-aware deep reinforcement learning is proposed in [44]. Finally, the 

inclusion of reactive power from VRE and ESS under uncertainty was formulated into optimal smart 

distribution frameworks in [45] (Table 2). 

Table 2. Comparison of relevant literature 

Ref. 
Optimal 

scheduling 

Network 

constraints of DNs 
Reconfiguration Uncertainty 

Switching cost 

allocation 

[16] √ √ √ √ × 

[17] √ √ √ × × 

[18] √ √ × × × 

[19] √ × × √ × 

[20] √ √ × × × 

[21] √ × × × × 

[22] √ × × × × 

[23] √ √ √ × × 

[24] √ √ × × × 

[25] √ √ √ √ × 

[26] √ √ √ √ × 

[27] √ × × √ × 

[28] √ × × √ × 

[29] √ √ × √ × 

[30] √ × × √ × 

[31] √ √ × √ × 

[32] √ × × √ × 

[33] √ × × √ × 

[34] √ × × √ × 

[35] √ √ × √ × 

[36] √ √ × √ × 

[37] √ × × √ × 

[38] √ √ × √ × 

[39] √ × × √ × 

[40] √ × × √ × 

[41] √ √ × √ × 

[42] √ √ × √ × 

[43] √ × × √ × 

[44] √ √ × √ × 

[45] √ √ × √ × 

This 

paper 
√ √ √ √ √ 

Research Gap 

Current studies in the literature exhibit several key limitations.  

• A notable gap exists in implementing globally distributed trading mechanisms that inclusively 

involve all participants, despite the growing emphasis on privacy in multi-microgrid (MMG) 

energy trading. 

• Furthermore, while robust optimization effectively manages uncertainty, its reliance on worst-case 

scenarios often leads to overly conservative decisions that may not reflect practical operational 

efficiencies in real-world conditions.   
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• The modeling challenges in MMGs are not thoroughly investigated, specifically with the dual 

concern of uncertainty and proper switching cost allocation together.  

• Lack of physical network constraints: The majority of the trading models with quantity flexibility 

assume an ideal model which usually do not take into DNs’ fundamental physical network 

constraint, leading to unrealistic scheduling results and eventually flow-based market 

participation autonomy of Mgs. This omission demonstrates the continuing requirement for 

integrated methods, such as reconfiguration techniques, in order to enforce physical network 

constraints on energy trading. 

Contribution 

There are several novel contributions of this study to the literature of decentralized energy management 

and power distribution network optimization. The contribution of this paper can be summarized as 

follows:   

• A customized PSO to optimize the electric distribution performance in the MGD system. 

• Three-scenario analysis: Working in TPC network to quantitatively examine the effect of PSO 

and network reconfiguration. (1) C 1: Baseline scenario (TPC operation and without renewable, 

PSO, network reconfiguration). (2) Configuration 2: to model the TPC operation with 

renewables, and PSO, without any reconfiguration. (3) Case 3: the TPC transmission using 

renewables, PSO and network reconfiguration. 

Paper Layout 

The remainder of this paper is structured as follows: Section 2 presents the proposed methodology, 

including system modeling, the uncertainty-aware PSO algorithm, and a representation of the IEEE 84-

bus TPC network. Section 3 outlines the multi-scenario simulation framework used to evaluate three 

operational configurations. Section 4 describes the simulation results, comparing performance across 

power loss, voltage stability, and cost. Section 5 discusses the findings and section 6 concludes the 

implications of the findings and the robustness of the proposed strategy by summarizing key 

contributions and future directions. 

MODELING AND FORMULATION 

The cost effectiveness of energy trading in a smart grid is maximized while total operational costs are 

minimized via the objective function. This is obtained by the optimization of two terms: Total 

operational costs sum among all participating microgrids, and Penalty term which both quantifies and 

compensates for the risk incorporated with uncertainty of power generation from renewable sources. 

Through such an explicit reduction of renewable energy fluctuation variance, the optimization 

framework further improves economic efficiency and system robustness against unpredictable power 

outputs arising from renewables. This multi-prong approach is designed to manicure that the energy 

trading decisions made are low cost and robust to fluctuations in renewable-based sources of power, 

such as solar and wind. 

The objective function to be minimized can be formulated as follows equation 1 and 2: 

min (∑ Ci(xi)+N
i=1 λ∙Var(∆PRE))                                   (1) 

Variations in wind and solar energy are modeled as stochastic deviations from their expected values. 

PRE=P̅RE+∆PRE                                                             (2) 
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Adding renewable energy to MMG 

The power output from a solar PV system, PPV, is calculated by equation 3: 

PPV=η
PV

∙A∙G∙ cos (θ)                                                       (3) 

The power output of a wind turbine, PWind, is expressed as equation 4: 

PWind=
1

2
∙ρ∙A∙v3∙Cp                                                              (4) 

Accurate mathematical modeling of PV and WT generation units is essential for understanding the role 

of distributed renewable resources in the operation of microgrids and MMG systems.  

The Constraints Imposed on Reconfiguration 

The reconfiguration process is subject to a set of constraints that maintain network stability, operational 

efficiency, and radial topology. These constraints, formulated based on power flow equations and binary 

connectivity variables, are mathematically expressed as follows: 

Net Power Balance Equations 

At each node k and time t, the balance of active and reactive power is computed by considering all 

incoming, outgoing, curtailed, flexible, and shed power components which are shown in equation 5 and 

6. 

Pk,t
net=Pk,t

b +Pk,t
L +Pk,t

L,drp
-Pk,t

fc
+Pk,t

el -Pk,t
L,shedded  

                                   (5) 

Q
k,t
net=Q

k,t
L +Q

k,t
L,drp-Q

k,t
L,shedded                                                         (6) 

Power Flow Constraints 

The net active and reactive power at node k must lie within bounds defined by the difference between 

incoming and outgoing power, modified by line status variables via the Big-M formulation. It was 

represented by equation (7), (8), (9), (10), 

Pk,t
net≥Pik,t- ∑ Pik,t- [1-γ

ik,t
] ∙Mj∈T                                                      (7) 

Pk,t
net≤Pik,t- ∑ Pik,t+[1-γ

ik,t
]∙Mj∈T                                                        (8) 

Q
k,t
net≥Q

ik,t
- ∑ Q

ik,t
- [1-γ

ik,t
] ∙Mj∈T                                                        (9) 

Q
k,t
net≤Q

ik,t
- ∑ Q

ik,t
+[1-γ

ik,t
]∙Mj∈T                                                           (10) 

Voltage Constraints 

The voltage at bus k must be bounded by the sending-end voltage Ui,t, adjusted for line losses and 

conditional on the operational status of the line. Also, it is not greater than the sending voltage, factoring 

in power flow and status of the line using the big-M formulation are illustrated in equation (11), (12), 

(13). 

Uk,t≥Ui,t-
rikPik,t+xikQ

ik,t

U1,t
- [1-γ

ik,t
] ∙M                                               (11) 



Ghaith M. Fadhil, et al: Hybrid solar-wind ……  Archives for Technical Sciences 2025, 34(3), 431-456 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           437 

Uk,t≤Ui,t-
rikPik,t+xikQ

ik,t

U1,t
+ [1-γ

ik,t
] ∙M                                               (12) 

Ui
min≤Ui,t≤Ui

max                                                                           (13) 

Line Flow Constraints 

The active power flow Pik, t must remain within its allowable limits, determined by the line status γ
ik, t

, 

which indicates whether the line is ON or OFF. Moreover, the reactive power flow Q
ik, t

 on a line 

between buses i and k must be constrained within its maximum allowable range, depending on the status 

of the line in equation 14 and 15. 

-γ
ik,t

∙Pik
max≤Pik,t≤γ

ik,t
∙Pik

max                                                                (14) 

-γ
ik,t

∙Q
ik
max≤Q

ik,t
≤γ

ik,t
∙Q

ik
max                                                               (15) 

Radial Operation Constraints: 

The spanning tree approach enforces directionality symmetry, ensuring that connections between nodes 

i to k and k to i align with the binary line status γ
ik, t

 are shown in equation 16. 

β
ik,t

+β
ki,t

=γ
ik,t

                                                                                      (16) 

Root node constraint specifies that the root bus (node 0) does not have any incoming branches, forming 

the starting point of the radial topology in equation 17.                                       

∑ β
k0,t

=0k                                                                                              (17) 

The tree branch constraint limits each node to a maximum of one incoming edge, thereby preserving a 

loop-free radial structure in equation 18.                                                       

∑ β
ki,t

≤1k                                                                                                 (18) 

Power Flow Analysis 

For a system of nonlinear equations f(x)=0, the Newton-Raphson iterative update is given by equation 

19,  

x(k+1)=x(k)-J-1(x(k))∙f(x(k))                                                                       (19) 

In MMGs, the power flow problem requires solving nonlinear equations 20 and 21 that represent the 

balance of active (P) and reactive (Q) power at each bus. 

Pi=Vi ∑ Vj(Gij cos θij +Bij sin θij)
N
j-1                                                        (20) 

Q
i
=Vi ∑ Vj(Gij sin θij -Bij cos θij  )N

j-1                                                        (21) 

Application of the optimization techniques for MMG (PSO optimization technique) 

The fitness function is adapted to account for uncertainty are represented by equation 22: 

Fitness(x)=w∙Cost(x)+(1-w)∙Resilience(x)                                                  (22) 

In the PSO-based optimization framework for MMGs, the fitness function is designed to incorporate 
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uncertainty by combining two objectives: minimizing cost and maximizing resilience. Each particle 

updates its position by adding its velocity to its current location at every iteration. This dynamic 

movement enables a broad exploration of the solution space. Each particle adjusts its trajectory based 

on its personal best position and the global best position found by the swarm. The location update 

equation 23 explains this as follows: 

xi
(t+1)=xi

(t)+vi
(t+1)                                                                                                (23) 

In PSO, each particle’s velocity is influenced by three components: inertia (tendency to maintain current 

direction), cognitive influence (attraction toward its own best-known position), and social influence 

(attraction toward the swarm’s global best position). These influences are combined within an equation 

24 to update the particle's velocity 

vi
(t+1)=w∙vi

(t)+c1∙r1∙(p
i
best-xi

(t))+c2∙r2∙(gbest-xi
(t))                                               (24) 

The inertia weight (w) balances exploration (global search) and exploitation (local refinement), which 

is essential for achieving convergence in PSO. 

Cost Equations and Their Integration into Optimization Functions 

Efficient electricity trading requires minimizing the overall operational cost of the distribution network 

to ensure balanced supply and demand. The total cost in a microgrid typically includes three 

components: generation cost, trading cost (buying/selling electricity), and penalty cost incurred when 

electricity demand is unsupplied. The electricity generation cost is modeled as followed equation 25: 

Ci,t
Gen=λi

MT
p

i,t
MT+λi

BS
p

i,t
BSC+p

i,t
BSD+ki

TS(Hi,t
TSC+Hi,t

TSD)                                                        (25) 

PROPOSED FRAMEWORK 

 

Figure 1. Flowchart of the proposed framework for PV and WT integration and reconfiguration in the TPC system 

Run the TPC network under 

normal operation, Equations (19, 

20, 21) 

Develop the PSO algorithm, Equations 

(22, 23, 24) 

Run the TPC network with integration of PV 

and WT, without reconfiguration, Equations (2, 

4) 

Run the TPC network with integration of PV 

and WT, with reconfiguration, Equations (3–

15) 

PSO: Find the best power lines and locations 

for PV and WT 
PSO: Find the optimal switch locations and 

open/close status 

Performance evaluation and comparisons, 

Equations (1, 25) 

IEEE 84-bus topology, Figure 2 
IEEE switch status (open/close), Table 2 

Bus data (impedance, power, etc.), Table 3 

PV, WT PV, WT 

Evaluation metrics 
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A multi-scenario configuration methodology is proposed in Fig. 1), supported by a simulation-based 

study to evaluate hybrid renewable energy integration and dynamic network reconfiguration in the TPC 

distribution system. The PSO algorithm is employed to enable decentralized, stable, and flexible 

integration of wind turbines and renewable energy sources [34]. Figure 1 illustrates a multi-phase 

methodology, comprising data preprocessing, initial system setup, and performance evaluation as its 

core phases. 

The IEEE 84-bus for the TPC  

TPC has a large and technically complex transmission-distribution grid covering the entire island of 

Taiwan. That is why the study have such a strong infrastructure enabling us to trade energy with 

precision and transmit power quickly and efficiently across our entire region. This paper proposes a new 

representation of the IEEE 84-bus layout for the TPC network shown in Figure 2. In a preferred 

embodiment, the topology depicts reconfigure nodes and transmission line infrastructure. 

 

Figure 2. Schematic of the IEEE 84-bus distribution 

 The IEEE 84-bus network will be used as the backbone of our analysis, offering good readings to 

investigate MG reconfiguration optimization algorithms and decentralized energy trading [15]. A 

systematic operational condition of each switch and a property of connecting line are shown in Table 3. 

The network map consists of two primary supply sources (S1/MicroGrid_1 and S2/MicroGrid_2), a 

system of interconnected buses along with controllable switches. Switches in the ON condition are 

controlled by solid green lines (closed) and dashed orange lines (open), representing active or isolated 

paths, respectively. In the present setting, the radial-shaped segmentation is observed in which S1 

provides for the lower-left and central left regions while S2 provides for the upper-right and lower right 

regions. Importantly, the large number of open (tie) switches represents an important network 

reconfiguration possibility and allows a more efficient operation for different purposes, including load 

factor improvement load factor correction, fault isolation voltage profile improvement power loss 

reduction distributed generation (PV and WT) optimal integration. 

Algorithm 1: Hybrid Solar-Wind Integration Using PSO 

Input:  

• IEEE 84-bus network model 

• Initial power injection data 𝑃𝑖
(0)

for each bus 𝑖 

• Renewable energy (PV, WT) with output power 𝑃𝑃𝑉 , 𝑃𝑊𝑇 

• PSO parameters: swarm size 𝑁, iterations 𝑇, and coefficients 𝑐1, 𝑐2, 𝑤 
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Output: 

• Optimized network configuration: {𝑃𝑃𝑉
, 𝑃𝑊𝑇

, switch positions} 

• Performance metrics: cost, losses, voltage stability 

Step 1: Initialize Network 

Let the network model 𝐺be represented as: 

• 𝐺 = (𝑉, 𝐸), where 𝑉is the set of nodes (buses) and 𝐸is the set of edges (connections). 

• Initial power and impedance data are provided for each line: 

𝑍𝑖𝑗 = 𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗for each line (i, j)Step 2: Initialize PSO 

For each particle 𝑝in the swarm, initialize the following: 

• Position: 𝑋𝑝
(0)

= {𝑃𝑃𝑉 , 𝑃𝑊𝑇 ,switch locations} 

• Velocity: 𝑉𝑝
(0)

 

• Fitness: 𝑓𝑝
(0)

= Cost Function(𝑋𝑝
(0)

) 

Where: 

𝑓𝑝 = 𝐶generation(𝑃𝑃𝑉, 𝑃𝑊𝑇) + 𝐶losses(𝑃𝑖)Step 3: Fitness Calculation 

For each particle 𝑝, calculate the fitness: 

𝑓𝑝 = 𝐶generation(𝑃𝑃𝑉, 𝑃𝑊𝑇) + 𝐶losses(𝑃𝑖)Subject to the following constraints: 

• Voltage constraints at bus 𝑘: 

𝑉𝑘
min ≤ 𝑉𝑘 ≤ 𝑉𝑘

maxPower flow constraints between buses 𝑖and 𝑘: 

𝑃𝑖𝑘 =
𝑉𝑖𝑉𝑘

𝑍𝑖𝑘
for active power𝑄𝑖𝑘 =

𝑉𝑖𝑉𝑘

𝑍𝑖𝑘
for reactive power 

Step 4: Update PSO 

Update the position and velocity of each particle using: 

𝑉𝑝
(𝑡+1)

= 𝑤𝑉𝑝
(𝑡)

+ 𝑐1𝑟1(𝑋𝑝
best − 𝑋𝑝

(𝑡)
) + 𝑐2𝑟2(𝑋global

best − 𝑋𝑝
(𝑡)

) 

Update the position: 

𝑋𝑝
(𝑡+1)

= 𝑋𝑝
(𝑡)

+ 𝑉𝑝
(𝑡+1)

Step 5: Evaluate Performance 

For each updated position 𝑋𝑝
(𝑡+1)

: 

• Run the power flow calculation to find 𝑃𝑖 , 𝑄𝑖for each bus. 

• Calculate performance metrics like: 
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Total Cost = ∑ (
𝑖

𝐶generation(𝑃𝑖) + 𝐶losses(𝑃𝑖))Voltage Stability Metric = ∑ (
𝑖

𝑉𝑖 − 𝑉nominal)
2 Step 6: 

Check Convergence 

Check for convergence by comparing the change in the best cost function value: 

Δ𝑓best =∣ 𝑓best

(𝑡)
− 𝑓

best

(𝑡−1)
∣ 

If Δ𝑓best < 𝜖(a small threshold), then stop. 

Step 7: Output Results 

Return the optimized configurations: 

• {𝑃𝑃𝑉
, 𝑃𝑊𝑇

, switch locations} 

• Performance metrics: {cost, losses, voltage stability} 

A smart grid with hybrid solar-wind integration can be optimized with the help of Particle Swarm 

Optimization (PSO) as presented in Algorithm 1. This starts with initializations of the IEEE 84-bus 

network and PSO parameters then calculates the fitness of each particle against the generation costs and 

the power losses. The algorithm restarts the procedure of redefining the location of the particles and their 

velocity, measures of effectiveness, including cost and voltage steadiness, and convergent tests. Once 

convergence occurs, the best network configuration and performance condition is replicated (Table 3). 

Table 3. Status of switches in the IEEE 84-bus distribution network under normal operating conditions

Switch Number Status Connecting Buses Switch 
Number 

Status Connecting 
Buses 

Switch 
Number 

Status Connecting 
Buses 

1 Closed connection near S1 33 Closed 32 – 33 65 Closed connection near 

S2 

2 Closed 1 – 2 34 Closed 33 – 34 66 Closed 65 – 66 

3 Closed 2 – 3 35 Closed 34 – 35 67 Closed 66 – 67 

4 Closed 3 – 4 36 Closed 35 – 36 68 Closed 67 – 68 

5 Closed 4 – 5 37 Closed 36 – 37 69 Closed 68 – 69 

6 Closed 5 – 6 38 Closed 37 – 38 70 Closed 69 – 70 

7 Closed 6 – 7 39 Closed 38 – 39 71 Closed 70 – 71 

8 Open 7 - Branching 40 Closed 39 – 40 72 Closed 71 – 72 

9 Closed Branching from 8 – 9 41 Closed 40 – 41 73 Closed connection near 

S2 

10 Open 9 - Branching 42 Closed 41 – 42 74 Closed 73 – 74 

11 Closed connection near S1 43 Closed near S1 75 Closed 74 – 75 

12 Closed 11 – 12 44 Closed 43 – 44 76 Closed 75 – 76 

13 Open 12 - Branching 45 Closed 44 – 45 77 Closed 76 – 77 

14 Open Branching from 13 46 Closed 45 – 46 78 Closed 77 – 78 

15 Closed connection near S1 47 Closed near S2 79 Closed 78 – 79 

16 Closed 15 – 16 48 Closed 47 – 48 80 Closed 79 – 80 

17 Closed 16 – 17 49 Closed 48 – 49 81 Closed 80 – 81 

18 Closed 17 – 18 50 Closed 49 – 50 82 Closed 81 – 82 

19 Closed 18 – 19 51 Closed 50 – 51 83 Closed 82 – 83 

20 Closed 19 – 20 52 Closed 51 – 52 84 Open Multiple 

branching 

21 Closed 20 – 21 53 Closed 52 – 53 85 Open Reconfiguration 

22 Open 21 - Branching 54 Closed 53 – 54 86 Open Reconfiguration 

23 Closed Branching from 22 – 23 55 Closed 54 – 55 87 Open Reconfiguration 

24 Closed 23 – 24 56 Closed near S2 88 Open Reconfiguration 

25 Closed connection near S1 57 Closed 56 – 57 89 Open Reconfiguration 

26 Closed 25 – 26 58 Closed 57 – 58 90 Open Reconfiguration 

27 Closed 26 – 27 59 Closed 58 – 59 91 Open Reconfiguration 

28 Closed 27 – 28 60 Closed 59 – 60 92 Open Reconfiguration 

29 Closed 28 – 29 61 Closed 60 – 61 93 Open Reconfiguration 

30 Closed connection near S1 62 Closed 61 – 62 94 Open Reconfiguration 

31 Closed 30 – 31 63 Closed 62 – 63 95 Open Reconfiguration 

32 Closed 31 – 32 64 Closed 63 – 64 96 Open Reconfiguration 

A set of basic input values such as line impedances, initial equilibrium power injections and open circuit 

paths are inputs to the simulation scheme that allows the computation of derived parameters and 
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measurements adjustable under optimal load flow. Line impedance has an important influence on power 

flow optimization and loss calculation. Tables 4 and 5 systematically summarize tabulations for the input 

power parameters and impedance characteristics, respectively. In particular, Table 4 presents network 

topology and provides actual values of resistance (R), reactance (X), half-shunt susceptance (B/2) and 

transformer tap ratio (a) for each line segment in the transmission. These specific results are very useful 

for network modeling and power flow convergence. They are valuable resources for the realization of 

advanced power system strategies, such as load restoration, fault isolation and alternate path to provide 

that make it possible to have an intentional control over the pattern of power flow and also lead to a 

more resilient network. 

Table 4. Characteristics of transmission lines in the distribution TPC network. the table details the resistance (r), 

reactance (x), half of the shunt susceptance (b/2), and transformer tap ratio (a) 

Buses 
R (Ω) X(Ω) 

B

2
 A 

Buses 
R (Ω) X(Ω) 

B

2
 A 

Buses 
Buses X(Ω) 

B

2
 A 

From To From To From To 

1 2 0.1944 0.6624 0 1 33 34 0.0262 0.0538 0 1 1 66 0.0486 0.1656 0 1 

2 3 0.2096 0.4304 0 1 34 35 0.1703 0.3497 0 1 66 67 0.1703 0.3497 0 1 

3 4 0.2358 0.4842 0 1 35 36 0.0524 0.1076 0 1 67 68 0.1215 0.414 0 1 

4 5 0.0917 0.1883 0 1 36 37 0.4978 1.0222 0 1 68 69 0.2187 0.7452 0 1 

5 6 0.2096 0.4304 0 1 37 38 0.0393 0.0807 0 1 69 70 0.0486 0.1656 0 1 

6 7 0.0393 0.0807 0 1 38 39 0.0393 0.0807 0 1 70 71 0.0729 0.2484 0 1 

7 8 0.0405 0.138 0 1 39 40 0.0786 0.1614 0 1 71 72 0.0567 0.1932 0 1 

8 9 0.1048 0.2152 0 1 40 41 0.2096 0.4304 0 1 72 73 0.0262 0.0528 0 1 

8 10 0.2358 0.4842 0 1 39 42 0.1965 0.4035 0 1 1 74 0.324 1.104 0 1 

8 11 0.1048 0.2152 0 1 42 43 0.2096 0.4304 0 1 74 75 0.0324 0.1104 0 1 

1 12 0.0786 0.1614 0 1 1 44 0.0486 0.1656 0 1 75 76 0.0567 0.1932 0 1 

12 13 0.3406 0.6944 0 1 44 45 0.0393 0.0807 0 1 76 77 0.0486 0.1656 0 1 

13 14 0.0262 0.0538 0 1 45 46 0.131 0.269 0 1 1 78 0.2511 0.8556 0 1 

13 15 0.0786 0.1614 0 1 46 47 0.2358 0.4842 0 1 78 79 0.1296 0.4416 0 1 

1 16 0.1134 0.3864 0 1 1 48 0.243 0.828 0 1 79 80 0.0486 0.1656 0 1 

16 17 0.0524 0.1076 0 1 48 49 0.0655 0.1345 0 1 80 81 0.131 0.264 0 1 

17 18 0.0524 0.1076 0 1 49 50 0.0655 0.1345 0 1 81 82 0.131 0.264 0 1 

18 19 0.1572 0.3228 0 1 50 51 0.0393 0.0807 0 1 82 83 0.0917 0.1883 0 1 

19 20 0.0393 0.0807 0 1 51 52 0.0786 0.1614 0 1 83 84 0.3144 0.6456 0 1 

20 21 0.1703 0.3497 0 1 52 53 0.0393 0.0807 0 1 6 56 0.131 0.269 0 1 

21 22 0.2358 0.4842 0 1 53 54 0.0786 0.1614 0 1 8 61 0.131 0.269 0 1 

22 23 0.1572 0.3228 0 1 54 55 0.0524 0.1076 0 1 12 44 0.131 0.269 0 1 

22 24 0.1965 0.4035 0 1 55 56 0.131 0.269 0 1 13 73 0.3406 0.6994 0 1 

24 25 0.131 0.269 0 1 1 57 0.2268 0.7728 0 1 14 77 0.4585 0.9415 0 1 

1 26 0.0567 0.1932 0 1 57 58 0.5371 1.1029 0 1 15 19 0.5371 1.0824 0 1 

26 27 0.1048 0.2152 0 1 58 59 0.0524 0.1076 0 1 17 27 0.0917 0.1883 0 1 

27 28 0.2489 0.5111 0 1 59 60 0.0405 0.138 0 1 21 84 0.0786 0.1614 0 1 

28 29 0.0486 0.1656 0 1 60 61 0.0393 0.0807 0 1 29 33 0.0524 0.1076 0 1 

29 30 0.131 0.269 0 1 61 62 0.0262 0.0538 0 1 30 40 0.0786 0.1614 0 1 

1 31 0.1965 0.396 0 1 62 63 0.1048 0.2152 0 1 35 47 0.0262 0.0538 0 1 

31 32 0.131 0.269 0 1 63 64 0.2358 0.4842 0 1 41 43 0.1965 0.4035 0 1 

32 33 0.131 0.269 0 1 64 65 0.0243 0.0828 0 1 54 65 0.0393 0.0807 0 1 

Table 5. Initial injected power for transmission lines 

Index Injection Power (Mw) Index Injection Power (Mw) 

1 488.712139517526 13 1200 

2 1200 14 0 

3 1200 15 1166.23993372747 

4 117.344788762350 16 1200 

5 122.066192223495 17 1200 

6 1019.65073498411 18 1200 

7 1124.81406364160 19 1200 

8 777.261295231962 20 1200 

9 1184.07666584809 21 1200 

10 140.748290651205 22 1200 

11 1200 23 0 

12 1035.28296513910 24 1200 
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Multi-configuration scenarios 

The proceeding data processing describes how the simulation environment is built, and how data 

obtained by analyzing TPC work are processed. This stage explicitly deals with the uncertainties caused 

by renewable energy penetration, and their influences on trading behaviors among MGs. Various 

characteristics are examined within the base case study of TPC, in which traditional methodology to find 

feasible placement of switches is employed for better energy distribution, and power flow enhancement 

without considering renewable energy. Then, the study is developed in steps: considering PV and WT 

generation combined with PSO-based optimal switch allocation without reconfiguration to combat cost 

uncertainty / voltage drop; and then including reconfiguration (with PSO) for optimally 

placing/positioning switches for combining switches/PV power with core objective of loss reduction 

given optimal cost. 

Configuration 1:  

 

Figure 3. Operational sequence of the TPC power network distribution simulation
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The simulation of the TPC power network, shown in Figure 3, is developed based on critical inputs 

such as the status of switches (Table 3), line impedance data (Table 4), and size of initial power injections 

(Table 5). This information allows a formulation of a mathematical model for an optimal choice of 

switches and line parameters, as well as the resulting power flow algorithm. Starting out with acquisition 

of input data the process also contains determination of network topology; open/closed switches and 

lines, retrieval for line impedance values (104). For uniformity in the power flow calculations, line 

impedances are transformed to per-unit (p.u.). Comprehensive line and system state initialization data 

are then formed that include power injection, generation, and load information. Central to this is the 

Newton-Raphson approach to solving power flow equations (Equations 19--21), from which important 

performance indices, namely, optimal cost, power losses and voltage drop are obtained. These findings 

provide important feedback about the effectiveness, availability and performance of the TPC network in 

its normal operation. 

Configuration 2 and 3: 

The following sub-sections describe the process of applying the PSO algorithm shown in Figure 4 over 

several stages to obtain the best configuration of the system and its operation conditions. The main goal 

is to minimize the power costs and losses in the network for different RES integration possibilities. 

Initially, the PSO process was initiated by accurately setting the problem parameters, such as; number 

of decision variables involved, their range (lower and upper limit) searching spaces and an initial cost 

function, based on a reference power network injection for IEEE 84-bus system. At the same time, 

parameters of PSO that are specific to this method such as swarm size or maximum iterations along with 

initial inertia weight mingled with their damping ratio and cognitive/social learning coefficients are 

appropriately tuned in order to control its well-balanced explorative/explotative searching trend. In the 

initialization, each particle is placed in a random position with zero velocity (initial personal and global 

best) solutions. The basic optimization is conducted in an iterative manner, where the velocities are 

calculated from each particle's personal/PBest and GBest corrections as well as blueprinted via (22, 23, 

24) and finally treated for constraints whereby the particles' positions are subsequently updated. During 

each iteration, all the computed neighbor positions are analyzed and the local best and global best 

solutions are further optimized by a single particle based on weight inertia reducing metric. At 

convergence, the algorithm provides the optimal cost (bestCost), its trajectory, and the corresponding 

optimal values for power injections and line parameters (including that of switch positions) for use in 

further power flow computations, system placement analysis as well as permitting network 

reconfiguration strategies designed to improve system operation. 

The integration of both PV and WT systems extends the baseline methodology described in Equations 

(3) and (4). The addition of PV and WT systems makes the optimization problem much more complex 

and dimensional, and a more comprehensive approach must be adopted, even if the overall grid structure 

and PSO framework do not change. At this point in the methodology, the simulation analysis is extended 

and moved towards grid optimization by introducing the concept of grid reconfiguration. By exploiting 

the functionality of the PSO algorithm, switching points are wisely reconfigured to build a new 

optimized topology of the network. 
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Figure 4. Detailed flowchart of the PSO algorithm 
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THE PERFORMANCE EVALUATION 

The simulation results that are obtained during the data preprocessing phase are carefully and thoroughly 

analyzed during the performance evaluation phase. This phase starts with a full evaluation of important 

system performance metrics. In addition to specific best-cost metrics, such as operating cost and 

installation efficiency calculated from the initial unoptimized network architecture (Equation 25), this 

includes such metrics as voltage deviations from nominal values and total active and passive power 

losses. 

This first evaluation serves as a crucial standard by which to measure any further advancements. To 

measure efficiency and usefulness in practical application, a comparative analysis is performed on 

different cases of network reconfiguration with PSO optimization, including the detailed analysis of the 

PSO performance (convergence rate, number of iterations, and parameter sensitivity). In order to 

explicitly demonstrate the observable benefits in terms of operational efficiency and stability of the 

system, one of the main components of this stage is direct and quantitative comparison of critical metrics 

in terms of (mostly) power losses and voltage profiles of the original and PSO-optimized reconfigured 

topologies, especially for integrated PV and WT generation scenarios. In order to understand the 

significance of observed changes, the results of all the simulated scenarios are then extensively compared 

with sophisticated statistical analysis and data visualisation methods. The major goal is to provide 

accurate fact-based results on the efficacy of PSO-based operating network reconfiguration for the 

integration of RES and effective energy trading on TPC distribution network to promote the smart grid 

technologies and sustainable energy practices.   

Operational Cost: 

The overall operation cost that should be minimized is the cost of generation, trading and penalty of the 

unsupplied electricity. This can be expressed as equation 26: 

Ctotal = ∑ (𝜆𝑖
MT𝑃𝑖,𝑡

MT + 𝜆𝑖
BS𝑃𝑖,𝑡

BS + 𝑃𝑖,𝑡
BSD + 𝑘𝑖

TS𝐻𝑖,𝑡
TSC + 𝐻𝑖,𝑡

TSD)
𝑁

𝑖=1
  (26) 

Where, P represents the power at time t from different sources (generation, trading, etc.), 𝜆𝑖 are the cost 

coefficients for each generation source. 𝐾𝑖 represents penalty coefficients for unsupplied electricity. 

Power Losses (Active and Reactive Power Losses): 

The network is calculated to make power losses and they are defined as equation 27 and 28: 

Lossactive = ∑ 𝑃𝑖,𝑡
loss

𝑁

𝑖=1
                                                                     (27) 

Lossreactive = ∑ 𝑄𝑖,𝑡
loss

𝑁

𝑖=1
                                                                  (28) 

Where, 𝑝𝑖 is the active power loss at node i and time t. 𝑄𝑖 is the reactive power loss at node i and time t. 

Voltage Deviation: 

Voltage deviation is determined in the individual buses and is determined as a difference between the 

voltage of the bus and the nominal voltage is presented in equation 29: 

Voltage Deviation
𝑘,𝑡

=∣ 𝑈𝑘,𝑡 − 𝑈nominal ∣                                           (29) 

Where, 𝑈𝑘,𝑡 is the voltage at bus k and time t. 𝑈nominal is the nominal voltage value (usually 1 p.u. or 

another reference value). 
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Fitness Function (PSO Optimization): 

The fitness (equation 30) employed in the PSO algorithm is a mix of cost reduction and maximization 

of resilience: 

Fitness(𝑥) = 𝑤 ⋅ Cost(𝑥) + (1 − 𝑤) ⋅ Resilience(𝑥)                        (30) 

Where: 

• Cost(x) represents the total cost. 

• Resilience(x)is a measure of the system's robustness to uncertainty in renewable generation, 

which can be represented as equation 31: 

Resilience(𝑥) = Var(Δ𝑃RE)                                                                (31) 

Where, Var(∆PRE) is the variance of the uncertainty in renewable energy generation (solar and wind). 

SIMULATION RESULTS   

Particle Swarm Optimization (PSO) algorithm was developed with the help of MATLAB (R2021b) and 

its extensive optimization toolbox and big data solutions. The power flow calculations were also done 

with MATLAB by the Newton-Raphson method, and custom scripts were written to simulate the 

network. All the information, all calculations, all graphs, voltage profiles, power loss curves, all were 

handled and analyzed in the environment of MATLAB, which made the implementation comprehensive. 

This study used the IEEE 84-bus model of power distribution network, which is a standard of power 

distribution research. The dataset will contain data about 84 buses and 120 branches and will have initial 

power injections of 1200 MW. It can also deliver bus information, line impedance (resistance and 

reactance), switch status to reconfigure and renewable generation (PV and WT) information, including 

capacity and output. It is possible to simulate the network performance with various configurations due 

to the data. 

In this section, experimental results that have been obtained through the application of advanced 

optimization techniques to substantially improve the operational efficiency and overall performance of 

the TPC distribution network under various difficult conditions are presented and discussed. The 

empirical findings are carefully arranged and presented in three different but incrementally difficult 

operations to show the progressive improvements as follows. 

 A baseline is established by analyzing the TPC network’s performance under standard operating 

conditions, without renewables or optimization. 

• Complexity is increased by introducing combined PV and WT generation, demonstrating PSO’s 

role in optimizing network performance under variable conditions. 

• The integration of PSO-optimized reconfiguration techniques is evaluated, highlighting 

improvements in power flow, loss reduction, and voltage profile stability. 

This structured presentation clearly delineates the advantages, practical implications, and overall 

contributions of the developed optimization techniques to modern power distribution network 

management. 

Configuration 1: baseline 

This section contains the main outcomes of simulation results for the TPC distribution network under 

baseline conditions (Configuration 1). The TPC network was first simulated without considering the 
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integration of PV and WT renewable energy sources, and also without considering the application of 

PSO optimization methods. The baseline scenario is intended to provide a quantitative performance 

standard to measure the future effect of the integration and optimization methods of RES. 

Power Losses Analysis 

Power losses, mainly due to the resistive and reactive nature of the components in the network, is an 

inherent and very critical aspect of power system operation. Baseline simulations for the TPC 

distribution network showed that the total active power loss was 4.924 MW. These losses are mostly 

due to line impedance, transformer inefficiencies, and voltage drops, underscoring the importance of 

robust system design and efficient operational strategies. In order to maintain high transmission and 

distribution efficiency, mitigate excessive energy dissipation, and ensure continuous reliability (all of 

which are critical for grid stability and economic viability), such measures are essential. 

Overall System Cost (Best Cost) 

This section evaluates the baseline operating cost and voltage stability of the TPC network. Under 

baseline conditions, the optimal operating cost of the TPC distribution network was calculated to be 

$6.7931/MWh, which is an important factor in energy system management. Based on the principles of 

optimal economic dispatch, this measure is the most economical method for reliably meeting demand 

while taking into account restrictions of the grid, ensuring quality of supply, reliability and economic 

viability. Fig. 5 shows the voltage profile for various buses, which is an important instrument for 

evaluating the voltage stability under baseline conditions. This visualization gives very important insight 

into the intrinsic voltage profile and potential anomalies which can help to identify areas for 

improvement in the next optimization steps. 

 

Figure 5. Voltage Profile of the TPC distribution network under baseline operating conditions 

Configuration 2: TPC with renewables and PSO 

This section presents the full results from configuration 2, which is a considerable improvement by 

combining a hybrid renewable energy portfolio that includes both PV and WT sources. The PSO 

algorithm is used for the optimization of the TPC network's operational parameters under the integrated 

renewable energy conditions. Despite the complexity added by the PV and WT integration, the PSO 

algorithm is able to find the best power injection strategy to keep the grid stable. 

Optimal Placement of PV and WT Systems for Hybrid Integration 

Table 6 shows systematically the optimal bus location for both PV and WT systems in the TPC microgrid 

segments. This precise and optimized allocation of both PV and WT units is thus a critical enabler A 
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fundamental aspect of achieving the enhanced performance in configuration 2 is the meticulous 

determination of optimal placement for both PV and WT distributed generation units. Figure 6 offers a 

visual representation of the segments of the microgrid and the initial integration points for PV and WT 

systems to determine the most favorable bus locations for all the renewable energy sources in this hybrid 

case. Such strategic position is important to maximize the utilization of renewable energies, minimize 

active power losses, improve voltage profiles and enhance overall grid stability under variable 

generation conditions for the efficient and reliable operation of TPC network under high penetration of 

diversified renewable energy. 

Power Losses, Cost Optimization, and Voltage Profile Enhancement 

This section analyses the performance of TPC's distribution network under configuration 2 which reveals 

substantial gains following the optimal incorporation of both PV and WT systems, drastic reduction was 

observed in respect of energy losses and operational costs with respect to the baseline values. The PSO 

algorithm was repeated 200 times so that the optimal energy configuration can be reached, and its 

convergence performance is plotted on Figure 7. For the case of cost, the optimization started from 9.0 

$/MWh and fell steeply to 5.0 $/ MWh in the first iteration and then converged at optimal 2.1011 

$/MWh after nearly 140 iterations, thereby confirming the ability of PSO in solving complex problems 

over an enlarged solution space. As shown in Figure 8, and the voltage profile in Figure. When 

compared with the un‐optimized baseline, the total active powers losses have been achieved 

significantly from 4.924 to 0.0021 MW meanwhile. The main key performance indicators results are 

listed in Table 7, which indicates the efficient integration of hybrid renewable energy is achieved with 

PSO optimization. Overall, these findings unambiguously reveal a significant cost-effectiveness 

improvement in voltage stability and power loss reduction for the integration of hybrid PV-WT systems 

into the TPC network through PSO-best methodology. 

 

Figure 6. Schematic Diagram of the IEEE 84-Bus TPC Distribution Network, illustrating the optimized topology 

with MG1 and MG2 segments, alongside the strategic placement of integrated PV and WT generation systems. 
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Table 6. Optimal placement locations for PV and WT systems within the TPC distribution network microgrids 

Microgrid Segment Bus Number (PV / WT Location) 

MG 1 (Green) Bus 42 - PV 

MG 1 (Green) Bus 44 - WT 

MG 2 (Yellow) Bus 84 - PV 

MG 2 (Yellow) Bus 60 - PV 

MG 2 (Yellow) Bus 84 - WT 

MG 2 (Yellow) Bus 34 - PV 

MG 2 (Yellow) Bus 43 - WT 

MG 2 (Yellow) Bus 46 - PV 

Figure 7. Convergence curve of the PSO algorithm for 

hybrid PV-WT integration 

Figure 8. Per-Unit Voltage Profile of the TPC 

Distribution Network under Optimized Hybrid PV-WT 

Integration

Table 7. Key performance indicators and PSO algorithm parameters for the TPC distribution network under 

optimized hybrid PV-WT integration 

Parameter Value 

Number of Iterations 200 

Best Cost ($/MWh) 2.1011 

Total Power Losses (MW) 0.0021 

Number of Search Agents 10 
 

Configuration 3: Network Reconfiguration 

This section presents a thorough analysis of the performance of the TPC distribution network under 

Configuration 3 that provides an introduction to the reconfiguration of the network dynamically. The 

combined integration of distributed generation and network reconfiguration is expected to provide a 

better performance than the previous configurations. Detailed findings and discussions will discuss 

network reconfiguration scheme and topology, and further analysis of power losses and cost 

optimization, convergence analysis, enhanced voltage profile, and overall performance comparison. 

Network Reconfiguration Scheme and Topology 

This subsection explains how to strategically reconfigure the switches to change the flow of power and 

increase the thermal efficiency. The resulting optimized network topology, which is a visual 

representation of changed switch states and MG1 and MG2 delineation, is shown in Figure 9.  Optimal 

switch locations in order to minimize losses and maximize efficiency are systematically given in Table 

8. The implementation of coordinated reconfiguration, in addition to the continued PV and WT 

integration led to significant extra reductions in both energy losses and operational costs. 
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Power Losses, Cost Optimization, and Voltage Profile Enhancement 

As shown in the convergence curve shown in Figure 10, the optimization process started with the initial 

best cost of $8.0/MWh, and quickly lowered to 5.2 $/MWh, and settled on a very low value of only 

1.954 $/MWh by iteration 120, proving better economic performance. A direct comparison with the 

results obtained for Configuration 2 indicates that the total power losses were further decreased from 

0.0021 MW to 0.002 MW and the best cost was improved from 2.1011 $/MWh to 1.954 $/MWh. 

Compared with the baseline system without the integration of renewables, the power losses were greatly 

reduced from 4.924 MW to only 0.002 MW, which undoubtedly demonstrated the dramatic 

improvements in energy efficiency and cost-effectiveness. Figure 11 shows the improved stability of 

voltage with the voltage profile showing minimum fluctuations over the system buses. The culmination 

of all these performance indicators is summarized in Table 9. The synergistic integration of PV and WT 

systems with strategic network reconfiguration certainly presents the best performance of all tested 

configurations, which can be considered as an important strategy to optimal cost and loss reduction for 

modern energy distribution systems. 

Table 8. Optimal placement locations for PV systems within the TPC distribution network microgrids 

Microgrid Segment Bus Number (PV Location) 

MG 1 (Green) Bus 12 

MG 1 (Green) Bus 20 

MG 1 (Green) Bus 29 

MG 1 (Green) Bus 31 

MG 1 (Green) Bus 43 

MG 1 (Green) Bus 36 

MG 1 (Green) Bus 55 

MG 2 (yellow) Bus 52 

MG 2 (yellow) Bus 62 

MG 2 (yellow) Bus 70 

MG 2 (yellow) Bus 79 
 

 

Figure 9. Reconfigured topological representation of the TPC distribution network with integrated PV systems and 

microgrid segmentation 
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Figure 10. Convergence Curve of the PSO algorithm for PV, WT Integration with Network Reconfiguration 

 

Figure 11. Per-Unit Voltage Profile of the TPC Distribution Network under Optimized PV, WT Integration with 

Network Reconfiguration 

Table 9. key performance indicators and PSO algorithm parameters for the TPC distribution network under 

optimized PV, WT integration with network reconfiguration 

Parameter Value 

Number of Iterations 200 

Best Cost ($/MWh) 1.954 

Total Power Losses (MW) 0.002 

Number of Search Agents 10 
 

DISCUSSION  

This study offered a thorough comparative analysis of several power distribution network configurations 

with significant beneficial aspects of incorporating renewable energy systems with dynamic grid 

reconfiguration. The main objective was to obtain an optimal energy trading scheme within the power 
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distribution network, and the results always prove the excellent performance of this advanced 

configuration on the aspects of voltage stability, power loss reduction and total cost reduction. One of 

the most important ones is the significant improvement in voltage stability achieved by strategic 

reconfiguration of the network. 

Table 10. Comparative performance evaluation of key optimal metrics for different system configurations 

Parameter PV and WT (Configuration 2) PV and WT, Reconfiguration (Configuration 3) 

Best Cost ($/MWh) 2.1011 1.954 

Total Losses (MW) 0.0021 0.0020 

NO of Search Agents 10 10 

Iterations 200 200 

The multi-stage optimization process consistently showed that energy trading augmented with network 

reconfiguration represents the most optimal methodology. This configuration yielded the best results in 

terms of cost-effectiveness, substantial power loss reduction, and superior voltage regulation. The final 

optimized scenario achieved the lowest recorded operational cost of $1.954/MWh and remarkably 

reduced total active power losses to 0.002 MW. These figures represent a drastic improvement compared 

to the initial baseline system without renewable integration or optimization, where power losses were as 

high as 4.924 MW and operational costs were significantly greater. The comparative analysis of two 

distinct configurations, standard PV-WT integration versus reconfigured PV-WT operation, revealed a 

clear progression in performance improvements. The reconfigured PV-WT system exhibited the fastest 

convergence rate and achieved the lowest operational cost, proving to be the most efficient and optimal 

solution. Further detailed performance evaluations of these configurations, including best cost and total 

power losses, are systematically presented in Table 10. This table robustly confirms the superiority of 

the reconfiguration approach, as it consistently provided the minimum best operational cost of 

$1.954/MWh and achieved the lowest total power losses of 0.0020 MW. 

CONCLUSION 

This study proves that combining the hybrid photovoltaic (PV) and wind turbine (WT) generation 

systems with dynamic network reconfiguration can greatly improve the performance of the modern 

distribution networks. The suggested method is quite effective to lower the operation costs and the lost 

power, enhance the voltage stability and network performance. To be more precise, the outcomes of 

optimization revealed that operational costs (minimized to $6.7931/MWh at baseline) decreased to 

1.954/MWh in the final structure, whereas the power losses dropped to 0.002 MW, which is a drastic 

drop in comparison to 4.924 MW. These gains justify the fact that the suggested strategy can result in 

energy distribution optimization and achieve optimal smart grid efficiency. The statistical results proved 

the advantage of the PSO-based optimization, in which 200 iterations of the algorithm are convergent 

and optimal metrics of the cost and power losses are in proper agreement with optimal network 

operation. The voltage profiles also demonstrated the increased stability with the integrated hybrid 

renewable energy setup, with the significance of the best location and rearrangement of the grid 

elements. The proposed research may be extended in future studies by using real-time data and adaptive 

control systems, which would enhance the ability of the grid to react to changes in the amount of 

renewable energy generated. Also, the addition of energy storage systems might be considered as the 

next higher step in flexibility, as well as decrease intermittency and the system stability and reliability 

on the whole. Lastly, multi-objective optimization frameworks might also be useful to add other 

considerations like environmental impact, grid resilience and cost-effectiveness to guarantee a more 

holistic approach towards optimization of smart grid environments. 
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