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SUMMARY

In this work, a new optimization approach for the exploitation and smooth integration of hybrid
renewable sources (HRs), including PV solar/wind turbines in addition to a dynamic reconfiguration
process of electricity distribution microgrids, is proposed. A crucial novelty of this work is the definition
of a multi-scenario optimization framework that allows to compare devices at various levels (of
complexity) across different system conditions, and which has not been thoroughly investigated yet in
the literature. Further, the study presents one of the most detailed and operational-realistic representations
of an IEEE 84-bus Taiwan Power Company (TPC) distribution system model (in a unique dataset
containing exact switch status, impedance properties, and power injection location). This network model
serves asa scalable benchmark for grid optimization studies and utility-scale PV deployment. Moreover,
the proposed method adopts a variant of particle swarm optimization algorithm to minimize the
operational cost along with the variance-based penalty function in consideration of uncertainty
associated with renewable power generation. This combination of cost effectiveness and uncertainty
management in the context of a single objective function increases the stability and flexibility in grid
functions. Then, the approach is verified for three operational modes: a base scenario without any
renewable integration, a PSO-tuned scenario with PV and WT but ignoring network reconfiguration, and
an integrated (renewables together with reconfiguration). The final formation achieved after optimization
can minimize the power losses from 4.924 MW to around 0.002 MW and reduce the operational cost to
$1.954/MWh, as reported in results. Such results validate the effectiveness of our proposed strategy for
facilitating cost-efficient and robust operation of smart grid.

Key words: renewable energy integration, IEEE 84-bus system, multi-scenario simulation, network
reconfiguration, optimization algorithm, uncertainty modeling.
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Table 1: List of signs and symbols

List of signs and symbols

Ci(x;) Cost function for each microgrid or participant p Air density
A Weight factor for uncertainty variance penalty v Wind speed
Var(APgg) | Variance of the uncertainty in renewable energy | C, Turbine power factor

Npy Efficiency of the PV module fivd Represent the power flow in the
reconfigurable network.

A Area of the PV module Py, | Active power flow from node i to node k
at time t.

G Solar irradiance (W/m?) Viks A binary variable (0 or 1) related to the
status of the connection or line between
node i and node k at time t

0 Angle of incidence of sunlight on the panel QZ? Net reactive power at node k at time t.

Ui, Voltage magnitude at bus k at time t. Qik’t Reactive power flow from node i to node
k at time t.

Ui, Voltage magnitude at bus i at time . X Reactance of the line/branch connecting
bus i to bus k. This is also typically a
fixed parameter of the line.

Fik Resistance of the line/branch connecting busito | UM | Minimum permissible voltage magnitude

bus k. This is typically a fixed parameter of the at bus i.
line.
Cgf" Total generation cost for component i at time t. Ui | Maximum permissible voltage
magnitude at bus i.

prad Cost  coefficient (or price) for electricity | H[;¢ | Capacity or amount related to "TS"

generated by a specific type of generator MT

sl Cost coefficient (or price) for buying/selling | IS | Cost coefficient (or penalty) related to

electricity from a specific "BS" source "TS"
HZISD Demand or discharge related to "TS" ry and | takes values randomly between 0 and 1.
)
AGE) the particle's velocity pl" | best particle found position
w factor that determines how long the current | gh®' | position of the swarm
motion will continue based on the previous
velocity.c; and ¢, are acceleration coefficients

x the position of particle number "i" at time | vV | velocity of particle"i" at the next time

instant (1). instant (t+1)

Table 1 provides the different signs, symbols, and their respective definitions that are applied throughout
the paper in the description of important parameters of optimizing the hybrid solar-wind integration in
smart grids. These are symbols that form part of the mathematical and operation structure such as
variables of power flow, energy generation and optimization methods used in the system.

INTRODUCTION
Motivation

With the increase of distributed generators in power grid, e.g., photovoltaic (PV) and wind turbines
(WT) [1], [2], the modern electrical systems need DERs as the cornerstones. Rationalizing trading and
transactions in modern, decentralized smart microgrids using advanced energy trading algorithms. For
stability, sustainability, energy independence and perfectly efficient energy trading with the grid, the
optimal distribution is necessary at all times which is referred to as Network Reconfiguration (NR) [3],
[4]. NR is a pivotal process, which transmits and exchanges or redistributes the power lines in order to
maximize energy transfer within the network system and upgrade network wide performance. NR is
constantly looking for the best network parameters to save operational cost, decrease transmission loss,
and increase energy efficiency [5]. In recent studies, guided by the need of dealing with the much more
complex issues associated to NR algorithms, optimization techniques have been introduced in order to
find optimal reconfigurations that make power flow as directionless and smooth as possible [6], [7].
However, despite the enormous potential of renewable generation, on-grid integration of these sources
is difficult because they are inherently uncertain [8]. This unpredictability makes it difficult to maintain

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ° 34 432



Ghaith M. Fadhil, et al: Hybrid solar-wind ...... Archives for Technical Sciences 2025, 34(3), 431-456

the stability, efficiency and reliability of the network. Particle Swarm Optimization (PSO) algorithms
have demonstrated the capability to address the challenges of integrating renewable energy sources into
distribution networks [9].

LITERATURE REVIEW

Recent studies have proposed various energy management strategies for operating hybrid microgrids
(MGs) integrating PV and WT systems. These studies primarily aim to analyze the cost-effectiveness,
fairness in energy distribution, and data privacy aspects of battery energy storage systems (BESS) [10],
[11]. As shown in Table 2, researchers in this field have focused on enhancing real-time demand
response and management in off-grid systems [12], developing self-optimized intelligent control
systems for hybrid renewable energy resources integration [13], suggesting effective and flexible energy
management for hybrid microgrids [14], and optimizing grid-connected systems through shared energy
storage and cooperative alliances. In order to reduce operational costs and reduce supply-demand
instability, the modern PSO optimization algorithms are used to manage the renewable energy
distributions using scenario analysis and modified power distribution systems [16]. An enhanced Walrus
PSO algorithm has been proposed to significantly reduce costs and voltage fluctuations, while improving
stability under various uncertainty conditions [17]. Another notable advancement involves a hybrid
microgrid integration method aimed at reducing power losses and improving voltage profiles in radial
distribution networks [18]. An improved PSO algorithm for integrating renewable energy sources was
developed in [19]. This model enables optimal planning of PV and WT farms by incorporating multiple
units and inverters. Other contributions in recent research indicated that in multiple ways the study can
improve sustainability, resilience, and efficiency by improving the energy system operations and
integrating hybrid renewable energy sources. An advanced PSO algorithm for distributed energy
systems, combining demand information with generation sources of diverse types, has been developed
by the authors in [20], and the objectives are to reduce operating costs and fluctuations in energy.
Another study [21] proposed a novel optimization algorithm tailored to dynamic market conditions and
distributed energy resources, aiming to maximize profits and system flexibility. While a novel grey wolf-
based PSO hybrid optimization was introduced by the authors in [22], it depends on the multistage
bidding strategies to enhance the performance of the smart MGs and virtual power plant profitability.
Predictive models of CO2 emissions and carbon allocation systems utilizing PSO-enhanced neural
networks are also part of the effort to match power grids with peak carbon targets [23]Furthermore, for
multi-objective optimization problems in distributed power generation systems, a combined DE-layer
deep learning model is proposed with the improved PSO algorithm considering reliability,
environmental effectiveness and economic cost [24]. Thereafter, two-level optimization methods,
namely PSO and MWW O (PSO)-based method have been proposed to improve power quality and cost
effectiveness in hydrogen-based hybrid microgrids [25]. Recent advancements have focused
significantly on uncertainty-aware methodologies and robust scheduling mechanisms. For instance,
robust day-ahead microgrid scheduling under demand fatigue was explored in [26], while blockchain-
based peer microgrid auctions with integrated battery control were implemented under uncertainty in
[27]. Intraday market participation with predictive uncertainty control was developed for residential
buildings in [28], and resilient mobile storage strategies were proposed for uncertain grid environments
in [29]. Self-supervised learning and ensemble methods were applied to steam flow forecasting under
uncertainty in [30], while multi-microgrid scheduling incorporating mobile fuel cell storage and hybrid
stochastic-robust frameworks were proposed in [31]. Hierarchical multi-agent EV control systems were
enhanced using uncertainty-aware critic models in [32]. Study [33] explored demand response strategies
based on deep learning for short-term optimization in renewable microgrids. Other works targeted
uncertainty-aware mobile edge computing, capacitor and DSTATCOM placement using novel
optimizers in distribution networks [35], and multi-agent reinforcement learning for active voltage
control [36]. Furthermore, efforts toward carbon-cost dispatch and integrated energy systems were
studied in [37], and data-driven energy sharing among microgrids was emphasized in [38]. Scheduling
of multi-use battery storage systems with uncertainty models was addressed in [39]. Multi-energy hubs
with emission and uncertainty considerations have been tackled in [40], and harmonic reduction and
uncertainty mitigation via soft open point allocation are proposed in [41], and harmonic reduction and
uncertainty mitigation via soft open point allocation was proposed in [42]. Transformer-based
uncertainty-aware models for peer energy trading are explored in [43], and robust energy management
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of microgrids under uncertainty-aware deep reinforcement learning is proposed in [44]. Finally, the
inclusion of reactive power from VRE and ESS under uncertainty was formulated into optimal smart
distribution frameworks in [45] (Table 2).

Table 2. Comparison of relevant literature
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Research Gap

Current studies in the literature exhibit several key limitations.

e A notable gap exists in implementing globally distributed trading mechanisms that inclusively
involve all participants, despite the growing emphasis on privacy in multi-microgrid (MMG)

energy trading.

o Furthermore, while robust optimization effectively manages uncertainty, its reliance on worst-case
scenarios often leads to overly conservative decisions that may not reflect practical operational
efficiencies in real-world conditions.
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e The modeling challenges in MMGs are not thoroughly investigated, specifically with the dual
concern of uncertainty and proper switching cost allocation together.

e Lack of physical network constraints: The majority of the trading models with quantity flexibility
assume an ideal model which usually do not take into DNs’ fundamental physical network
constraint, leading to unrealistic scheduling results and eventually flow-based market
participation autonomy of Mgs. This omission demonstrates the continuing requirement for
integrated methods, such as reconfiguration techniques, in order to enforce physical network
constraints on energy trading.

Contribution

There are several novel contributions of this study to the literature of decentralized energy management
and power distribution network optimization. The contribution of this paper can be summarized as
follows:

e A customized PSO to optimize the electric distribution performance in the MGD system.

e Three-scenario analysis: Working in TPC network to quantitatively examine the effect of PSO
and network reconfiguration. (1) C 1: Baseline scenario (TPC operation and without renewable,
PSO, network reconfiguration). (2) Configuration 2: to model the TPC operation with
renewables, and PSO, without any reconfiguration. (3) Case 3: the TPC transmission using
renewables, PSO and network reconfiguration.

Paper Layout

The remainder of this paper is structured as follows: Section 2 presents the proposed methodology,
including system modeling, the uncertainty-aware PSO algorithm, and a representation of the IEEE 84-
bus TPC network. Section 3 outlines the multi-scenario simulation framework used to evaluate three
operational configurations. Section 4 describes the simulation results, comparing performance across
power loss, voltage stability, and cost. Section 5 discusses the findings and section 6 concludes the
implications of the findings and the robustness of the proposed strategy by summarizing key
contributions and future directions.

MODELING AND FORMULATION

The cost effectiveness of energy trading in a smart grid is maximized while total operational costs are
minimized via the objective function. This is obtained by the optimization of two terms: Total
operational costs sum among all participating microgrids, and Penalty term which both quantifies and
compensates for the risk incorporated with uncertainty of power generation from renewable sources.
Through such an explicit reduction of renewable energy fluctuation variance, the optimization
framework further improves economic efficiency and system robustness against unpredictable power
outputs arising from renewables. This multi-prong approach is designed to manicure that the energy
trading decisions made are low cost and robust to fluctuations in renewable-based sources of power,
such as solar and wind.

The objective function to be minimized can be formulated as follows equation 1 and 2:
min (2’11 G (xi)*i‘Va’”(APRE)) )
Variations in wind and solar energy are modeled as stochastic deviations from their expected values.

Prp=Prp+APgg 2
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Adding renewable energy to MMG
The power output from a solar PV system, Ppy, is calculated by equation 3:
Ppy=np,A- G- cos (6) 3
The power output of a wind turbine, Py;,,4, is expressed as equation 4:
Pryini=5 pAv*-C, (4)

Accurate mathematical modeling of PV and WT generation units is essential for understanding the role
of distributed renewable resources in the operation of microgrids and MMG systems.

The Constraints Imposed on Reconfiguration

The reconfiguration process is subject to a set of constraints that maintain network stability, operational
efficiency, and radial topology. These constraints, formulated based on power flow equations and binary
connectivity variables, are mathematically expressed as follows:

Net Power Balance Equations

At each node k and time t, the balance of active and reactive power is computed by considering all

incoming, outgoing, curtailed, flexible, and shed power components which are shown in equation 5 and
6.

PiI=PL PPy TP PP (5)

ot
d ,shedded
b= 0O -0 (6)
Power Flow Constraints
The net active and reactive power at node k must lie within bounds defined by the difference between

incoming and outgoing power, modified by line status variables via the Big-M formulation. It was
represented by equation (7), (8), (9), (10),

Pi2Py - Ber Pk [ 17| M ()

Pii<Py-Yjer P i -y 1M (8)

0120, Tjer Oy | 11| M ©)
01<0, - Syer Oy H17, 1M (10)

Voltage Constraints

The voltage at bus k must be bounded by the sending-end voltage U;,, adjusted for line losses and
conditional on the operational status of the line. Also, it is not greater than the sending voltage, factoring
in power flow and status of the line using the big-M formulation are illustrated in equation (11), (12),
(13).

TikPik Xk Oy,
Up2Up = 1y, | -1 (12)

1t

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ° 34 436



Ghaith M. Fadhil, et al: Hybrid solar-wind ...... Archives for Technical Sciences 2025, 34(3), 431-456

riPiktxikQy n

Uy <U, - [l—yik’t] M (12)

1,¢
U<, UM (13)
Line Flow Constraints

The active power flow P;, , must remain within its allowable limits, determined by the line status y, ,
which indicates whether the line is ON or OFF. Moreover, the reactive power flow Q. on a line

between buses i and k must be constrained within its maximum allowable range, depending on the status
of the line in equation 14 and 15.

Vit Pk <Pty Pik”™ (14)
'yik,t'Q:;lcastik,tfyik,t'Q:Zax (15)

Radial Operation Constraints:

The spanning tree approach enforces directionality symmetry, ensuring that connections between nodes
i to kand k to i align with the binary line status y,, , are shown in equation 16.

B Prii Vi (16)

Root node constraint specifies that the root bus (node 0) does not have any incoming branches, forming
the starting point of the radial topology in equation 17.

5k By0,~0 (17)

The tree branch constraint limits each node to a maximum of one incoming edge, thereby preserving a
loop-free radial structure in equation 18.

SiBu Sl (18)
Power Flow Analysis

For a system of nonlinear equations f(x)=0, the Newton-Raphson iterative update is given by equation
19,

xE D =®_ 1 (R Ax R (19)

In MMGs, the power flow problem requires solving nonlinear equations 20 and 21 that represent the
balance of active (P) and reactive (Q) power at each bus.

P=V: 3 Vi(Gy cos 0;+By; sin6;) (20)
0=V, Zjvl V(G sin6;-By; cos 0 ) (21)
Application of the optimization techniques for MMG (PSO optimization technique)
The fitness function is adapted to account for uncertainty are represented by equation 22:
Fitness (x)=w-Cost (x *-(1-w)-Resilience(x) (22)

In the PSO-based optimization framework for MMGs, the fitness function is designed to incorporate
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uncertainty by combining two objectives: minimizing cost and maximizing resilience. Each particle
updates its position by adding its velocity to its current location at every iteration. This dynamic
movement enables a broad exploration of the solution space. Each particle adjusts its trajectory based
on its personal best position and the global best position found by the swarm. The location update
equation 23 explains this as follows:

xi(t+1):xl_(t)+vi(t+1) (23)

In PSO, each particle’s velocity is influenced by three components: inertia (tendency to maintain current
direction), cognitive influence (attraction toward its own best-known position), and social influence
(attraction toward the swarm’s global best position). These influences are combined within an equation
24 to update the particle's velocity

vl.(tﬂ):W.vl_(t)_|_c1 " .(pibest_xi(t))+02.r2. (gbest_xl_(t)) (24)

The inertia weight (w) balances exploration (global search) and exploitation (local refinement), which
is essential for achieving convergence in PSO.

Cost Equations and Their Integration into Optimization Functions

Efficient electricity trading requires minimizing the overall operational cost of the distribution network
to ensure balanced supply and demand. The total cost in a microgrid typically includes three
components: generation cost, trading cost (buying/selling electricity), and penalty cost incurred when
electricity demand is unsupplied. The electricity generation cost is modeled as followed equation 25:

CE =i i pESCpBSP il (B +HEY” (25)
PROPOSED FRAMEWORK

IEEE 84-bus topology, Figure 2 Bus data (impedance, power, etc.), Table 3
IEEE switch status (open/close), Table 2

) v
Develop the PSO algorithm, Equations|
(22, 23, 24)

Run the TPC network under
normal operation, Equations (19,

20, 21) PV. WT PV. WT
: | § v
: Run the TPC network with integration of PV Run the TPC network with integration of PV
: and WT, without reconfiguration, Equations (2, and WT, with reconfiguration, Equations (3—
i 4) 15)
1
I l l
1
1
|
1
: PSO: Find the best power lines and locations PSO: Find the optimal switch locations and
: for PV and WT open/close status
1
! | |
1
1
1
1
1

Evaluation metrics

:

Performance evaluation and comparisons,
Equations (1, 25)

Figure 1. Flowchart of the proposed framework for PV and WT integration and reconfiguration in the TPC system
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A multi-scenario configuration methodology is proposed in Fig. 1), supported by a simulation-based
study to evaluate hybrid renewable energy integration and dynamic network reconfiguration in the TPC
distribution system. The PSO algorithm is employed to enable decentralized, stable, and flexible
integration of wind turbines and renewable energy sources [34]. Figure 1 illustrates a multi-phase
methodology, comprising data preprocessing, initial system setup, and performance evaluation as its
core phases.

The IEEE 84-bus for the TPC

TPC has a large and technically complex transmission-distribution grid covering the entire island of
Taiwan. That is why the study have such a strong infrastructure enabling us to trade energy with
precision and transmit power quickly and efficiently across our entire region. This paper proposes a new
representation of the IEEE 84-bus layout for the TPC network shown in Figure 2. In a preferred
embodiment, the topology depicts reconfigure nodes and transmission line infrastructure.

' | g 8 8 | .
1p34p67 B {sssasps2§1s0p948 | | | |
1234587 i 9 akssiszsisodeasl T T T
87 110_L| 47.96

4 H ! i ;
111213 ' ! | 646362616050p857 |
i ls P eeacdaz 6l sososssy | 1 T ]
S 5
4 [‘k : |

g 2 ! : 84
. 1516 1718 19 20 31234 | I B B L1 L7 R .
sid17ibaodozthzad 1 T T 3 69271706968 6766 | | | |
. ® A LA ;
25,26 27.28 2 - L 76757473
5262729 i 91 t575747j
o 39,40 :
P ; 39 4({ 95 84
3031323334353637384) | | [y |838281807978) | |
Bo#i32333586373gal | T T T T 1 Thzgdlsrebzok | 1]
@ L, ”
86
43,44 45 46 | | Buses
4—1—|7| Open switch
(3 44 45 36 I Close switch

Figure 2. Schematic of the IEEE 84-bus distribution

The IEEE 84-bus network will be used as the backbone of our analysis, offering good readings to
investigate MG reconfiguration optimization algorithms and decentralized energy trading [15]. A
systematic operational condition of each switch and a property of connecting line are shown in Table 3.
The network map consists of two primary supply sources (S1/MicroGrid_1 and S2/MicroGrid_2), a
system of interconnected buses along with controllable switches. Switches in the ON condition are
controlled by solid green lines (closed) and dashed orange lines (open), representing active or isolated
paths, respectively. In the present setting, the radial-shaped segmentation is observed in which S1
provides for the lower-left and central left regions while S2 provides for the upper-right and lower right
regions. Importantly, the large number of open (tie) switches represents an important network
reconfiguration possibility and allows a more efficient operation for different purposes, including load
factor improvement load factor correction, fault isolation voltage profile improvement power loss
reduction distributed generation (PV and WT) optimal integration.

Algorithm 1: Hybrid Solar-Wind Integration Using PSO
Input:

o IEEE 84-bus network model
e Initial power injection data Pi(o) for each bus i

o Renewable energy (PV, WT) with output power Ppy, Py
e PSO parameters: swarm size N, iterations T, and coefficients ¢4, c;, w
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Output:

e Optimized network configuration: {Pp’ Py switch positions}
e Performance metrics: cost, losses, voltage stability

Step 1: Initialize Network

Let the network model Gbe represented as:

e G = (V,E), where Vis the set of nodes (buses) and Eis the set of edges (connections).

e Initial power and impedance data are provided for each line:
Zij = R;; + jX;jfor each line (i, j)Step 2: Initialize PSO
For each particle pin the swarm, initialize the following:

e Position: XZ(,O) = {Ppy, Pyr,sWitch locations}
e Velocity: Vp(o)
e Fitness: fp(o) = Cost Function(Xr(,O))

Where:

fp = Caeneration(Ppvs Pwr) + Ciosses (Py)Step 3: Fitness Calculation

For each particle p, calculate the fitness:

fp = Caeneration(Ppvs Pwr) + Ciosses (Py)Subject to the following constraints:
. Voltage constraints at bus k:

Vi < v, < VP>Power flow constraints between buses iand k:

_ ViV

'A%
Pik — iVk

for active powerQ;;, =
ik ik

for reactive power
Step 4: Update PSO
Update the position and velocity of each particle using:
V(t+1) _ WV(t) +ear (Xbest _X(t)) +cor (Xbest _X(t))
p - "' 171\4%p P 212 A global P

Update the position:

X£t+1) - Xét) + Vp(”DStep 5: Evaluate Performance

For each updated position Xé”l):

e Run the power flow calculation to find P;, Q;for each bus.
e (Calculate performance metrics like:
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Total Cost = Z i( Cgeneration(P i) + Closses(P i))VOltage Stabﬂity Metric = Z i( Vi— Vnominal)2 Step 6:
Check Convergence

Check for convergence by comparing the change in the best cost function value:

A =1 A0 = £l
If Afyest < €(a small threshold), then stop.
Step 7: Output Results
Return the optimized configurations:

o {Ppy’ Py switch locations}
e Performance metrics: {cost losses’ voltage stability}

A smart grid with hybrid solar-wind integration can be optimized with the help of Particle Swarm
Optimization (PSO) as presented in Algorithm 1. This starts with initializations of the IEEE 84-bus
network and PSO parameters then calculates the fitness of each particle against the generation costs and
the power losses. The algorithm restarts the procedure of redefining the location of the particles and their
velocity, measures of effectiveness, including cost and voltage steadiness, and convergent tests. Once
convergence occurs, the best network configuration and performance condition is replicated (Table 3).

Table 3. Status of switches in the IEEE 84-bus distribution network under normal operating conditions

Switch Number | Status Connecting Buses Switch | Status | Connecting | Switch Status Connecting
Number Buses Number Buses
1 Closed connection near S1 33 Closed 32-33 65 Closed | connection near
S2
2 Closed 1-2 34 Closed 33-34 66 Closed 65 — 66
3 Closed 2-3 35 Closed 34-35 67 Closed 66 — 67
4 Closed 3-4 36 Closed 35-36 68 Closed 67— 68
5 Closed 4-5 37 Closed 3637 69 Closed 68 — 69
6 Closed 5-6 38 Closed 37-38 70 Closed 69 — 70
7 Closed 6-17 39 Closed 38-39 71 Closed 7071
8 Open 7 - Branching 40 Closed 39-40 72 Closed 71-72
9 Closed Branching from 8 - 9 41 Closed 40 —41 73 Closed | connection near
S2
10 Open 9 - Branching 42 Closed 41-42 74 Closed 73-74
11 Closed connection near S1 43 Closed near S1 75 Closed 74-175
12 Closed 11-12 44 Closed 43-44 76 Closed 75-176
13 Open 12 - Branching 45 Closed 44 —45 77 Closed 76 -177
14 Open Branching from 13 46 Closed 45 -46 78 Closed 77-178
15 Closed connection near S1 47 Closed near S2 79 Closed 78-179
16 Closed 15-16 48 Closed 47-48 80 Closed 79 - 80
17 Closed 1617 49 Closed 48 —49 81 Closed 80— 81
18 Closed 17-18 50 Closed 49 -50 82 Closed 81-82
19 Closed 18—19 51 Closed 50-51 83 Closed 82 -83
20 Closed 19-20 52 Closed 51-52 84 Open Multiple
branching
21 Closed 20-21 53 Closed 52-53 85 Open | Reconfiguration
22 Open 21 - Branching 54 Closed 53-54 86 Open | Reconfiguration
23 Closed | Branching from 22 — 23 55 Closed 54-55 87 Open | Reconfiguration
24 Closed 23 -24 56 Closed near S2 88 Open | Reconfiguration
25 Closed connection near S1 57 Closed 56 -57 89 Open | Reconfiguration
26 Closed 25-26 58 Closed 57-58 90 Open | Reconfiguration
27 Closed 26 —27 59 Closed 58 —59 91 Open | Reconfiguration
28 Closed 27-28 60 Closed 59 - 60 92 Open | Reconfiguration
29 Closed 28 —29 61 Closed 60— 61 93 Open | Reconfiguration
30 Closed connection near S1 62 Closed 6162 94 Open | Reconfiguration
31 Closed 30-31 63 Closed 62 — 63 95 Open | Reconfiguration
32 Closed 31-32 64 Closed 63 — 64 96 Open | Reconfiguration

A set of basic input values such as line impedances, initial equilibrium power injections and open circuit
paths are inputs to the simulation scheme that allows the computation of derived parameters and

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ° 34 441



Ghaith M. Fadhil, et al: Hybrid solar-wind ...... Archives for Technical Sciences 2025, 34(3), 431-456

measurements adjustable under optimal load flow. Line impedance has an important influence on power
flow optimization and loss calculation. Tables 4 and 5 systematically summarize tabulations for the input
power parameters and impedance characteristics, respectively. In particular, Table 4 presents network
topology and provides actual values of resistance (R), reactance (X), half-shunt susceptance (B/2) and
transformer tap ratio (a) for each line segment in the transmission. These specific results are very useful
for network modeling and power flow convergence. They are valuable resources for the realization of
advanced power system strategies, such as load restoration, fault isolation and alternate path to provide
that make it possible to have an intentional control over the pattern of power flow and also lead to a
more resilient network.

Table 4. Characteristics of transmission lines in the distribution TPC network. the table details the resistance (r),
reactance (x), half of the shunt susceptance (b/2), and transformer tap ratio (a)

Buses B Buses B Buses B
From | To R (Q) X(Q) 5 A From | To R (Q) X(Q) > A From | To Buses X(Q) > A
1 2 0.1944 | 0.6624 | 0 1 33 34 | 0.0262 | 0.0538 | 0 1 1 66 | 0.0486 | 0.1656 | 0 1
2 3 0.2096 | 0.4304 | O 1 34 351 0.1703 | 03497 | O 1 66 67 | 0.1703 | 03497 | O 1
3 4 0.2358 | 04842 | O 1 35 36 | 0.0524 | 0.1076 | O 1 67 68 | 0.1215 0.414 0 1
4 5 0.0917 | 0.1883 | 0 1 36 37 |1 04978 | 1.0222 | 0 1 68 69 | 02187 | 0.7452 | O 1
5 6 0.2096 | 0.4304 | O 1 37 38 | 0.0393 | 0.0807 | O 1 69 70 | 0.0486 | 0.1656 | O 1
6 7 0.0393 | 0.0807 | O 1 38 39 | 0.0393 | 0.0807 | O 1 70 71 | 0.0729 | 0.2484 | 0 1
7 8 0.0405 0.138 0 1 39 40 | 0.0786 | 0.1614 | O 1 71 72 | 0.0567 | 0.1932 ] O 1
8 9 0.1048 | 0.2152 | O 1 40 41 ] 0.2096 | 04304 | O 1 72 73 1 0.0262 | 0.0528 | 0 1
8 10 | 0.2358 | 0.4842 | O 1 39 42 | 0.1965 | 04035 | 0O 1 1 74 0.324 1.104 0 1
8 11 | 0.1048 | 0.2152 | O 1 42 43 ] 0.2096 | 04304 | O 1 74 75 1 0.0324 | 0.1104 | O 1
1 12 | 0.0786 | 0.1614 | 0 1 1 44 | 0.0486 | 0.1656 | 0O 1 75 76 | 0.0567 | 0.1932 | 0 1
12 13 | 0.3406 | 0.6944 | O 1 44 45 1 0.0393 | 0.0807 | O 1 76 77 | 0.0486 | 0.1656 | O 1
13 14 | 0.0262 | 0.0538 | 0 1 45 46 0.131 0.269 0 1 1 78 | 0.2511 | 0.8556 | 0 1
13 15 | 0.0786 | 0.1614 | 0 1 46 47 | 0.2358 | 04842 | 0O 1 78 79 | 0.1296 | 0.4416 | O 1
1 16 | 0.1134 | 03864 | O 1 1 48 0.243 0.828 0 1 79 80 | 0.0486 | 0.1656 | O 1
16 17 | 0.0524 | 0.1076 | O 1 48 49 | 0.0655 | 0.1345 | 0O 1 80 81 0.131 0.264 0 1
17 18 | 0.0524 | 0.1076 | O 1 49 50 | 0.0655 | 0.1345 |1 O 1 81 82 0.131 0.264 0 1
18 19 | 0.1572 | 0.3228 | O 1 50 51 | 0.0393 | 0.0807 | O 1 82 83 | 0.0917 | 0.1883 | 0 1
19 20 | 0.0393 | 0.0807 | O 1 51 52 1 0.0786 | 0.1614 | O 1 83 84 | 03144 | 0.6456 | O 1
20 21 1 0.1703 | 0.3497 | O 1 52 53 1 0.0393 | 0.0807 | O 1 6 56 0.131 0.269 0 1
21 22 ] 0.2358 | 04842 | 0O 1 53 54 1 0.0786 | 0.1614 | 0 1 8 61 0.131 0.269 0 1
22 23 1 0.1572 | 0.3228 | O 1 54 551 0.0524 | 0.1076 | O 1 12 44 0.131 0.269 0 1
22 24 1 0.1965 | 04035 | 0 1 55 56 0.131 0.269 0 1 13 73 | 0.3406 | 0.6994 | 0 1
24 25 0.131 0.269 0 1 1 57 | 02268 | 0.7728 | O 1 14 77 | 04585 | 09415 |1 O 1
1 26 | 0.0567 | 0.1932 | O 1 57 58 | 0.5371 | 1.1029 | 0 1 15 19 | 0.5371 | 1.0824 | 0 1
26 27 1 0.1048 | 0.2152 | O 1 58 59 | 0.0524 | 0.1076 | O 1 17 27 | 0.0917 | 0.1883 | 0 1
27 28 | 0.2489 | 0.5111 | O 1 59 60 | 0.0405 0.138 0 1 21 84 | 0.0786 | 0.1614 | O 1
28 29 | 0.0486 | 0.1656 | 0O 1 60 61 | 0.0393 | 0.0807 | O 1 29 33 | 0.0524 | 0.1076 | O 1
29 30 0.131 0.269 0 1 61 62 | 0.0262 | 0.0538 | 0 1 30 40 | 0.0786 | 0.1614 | O 1
1 31 | 0.1965 0.396 0 1 62 63 | 0.1048 | 0.2152 | O 1 35 47 | 0.0262 | 0.0538 | 0 1
31 32 0.131 0.269 0 1 63 64 | 02358 | 04842 | 0 1 41 43 | 0.1965 | 04035 | 0 1
32 33 0.131 0.269 0] 1 64 65 | 0.0243 | 0.0828 | 0 1 54 65 | 0.0393 | 0.0807 | O 1

Table 5. Initial injected power for transmission lines

Index | Injection Power (Mw) | Index | Injection Power (Mw)

1 488.712139517526 13 1200

2 1200 14 0

3 1200 15 1166.23993372747
4 117.344788762350 16 1200

5 122.066192223495 17 1200

6 1019.65073498411 18 1200

7 1124.81406364160 19 1200

8 777.261295231962 20 1200

9 1184.07666584809 21 1200

10 140.748290651205 22 1200

11 1200 23 0

12 1035.28296513910 24 1200
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Multi-configuration scenarios

The proceeding data processing describes how the simulation environment is built, and how data
obtained by analyzing TPC work are processed. This stage explicitly deals with the uncertainties caused
by renewable energy penetration, and their influences on trading behaviors among MGs. Various
characteristics are examined within the base case study of TPC, in which traditional methodology to find
feasible placement of switches is employed for better energy distribution, and power flow enhancement
without considering renewable energy. Then, the study is developed in steps: considering PV and WT
generation combined with PSO-based optimal switch allocation without reconfiguration to combat cost
uncertainty / voltage drop; and then including reconfiguration (with PSO) for optimally
placing/positioning switches for combining switches/PV power with core objective of loss reduction
given optimal cost.

Configuration 1:

Open switches in network
configuration (Table 2)

Initial power for line
injection
P1,P2,...... , P24
(Table 4)
Upper limit = 1200 MW
Find locations of
open switches Impedance profile
(Table 3) !
R(ARQ)...... »R(13) KVA Inject the power
< ¢ KV, b into the lines
T
. . . P(1), P(2), ...... P
Find locations of open paths in the (1), P2), - P(83)
network configuration ¥
]
=
2
Openl/close lines (Rm) KV, =
% =kva, Z| | Get information about the generators and
l - line factors
Base impedance PGi. OGL. PLi
Find impedance of corresponding Z, » QG1, PLi, ...
lines i
Zn
N BUS data information
Zy
Get normalized Bus data
impedance Z, *—————
VA . l
Rm " Ialne Performance analysis
ata i
Line data results:
> information Power flow equations Best cost, Power losses
— (19, 20, 21) —> Voltage drops
»

Figure 3. Operational sequence of the TPC power network distribution simulation
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The simulation of the TPC power network, shown in Figure 3, is developed based on critical inputs
such as the status of switches (Table 3), line impedance data (Table 4), and size of initial power injections
(Table 5). This information allows a formulation of a mathematical model for an optimal choice of
switches and line parameters, as well as the resulting power flow algorithm. Starting out with acquisition
of input data the process also contains determination of network topology; open/closed switches and
lines, retrieval for line impedance values (104). For uniformity in the power flow calculations, line
impedances are transformed to per-unit (p.u.). Comprehensive line and system state initialization data
are then formed that include power injection, generation, and load information. Central to this is the
Newton-Raphson approach to solving power flow equations (Equations 19--21), from which important
performance indices, namely, optimal cost, power losses and voltage drop are obtained. These findings
provide important feedback about the effectiveness, availability and performance of the TPC network in
its normal operation.

Configuration 2 and 3:

The following sub-sections describe the process of applying the PSO algorithm shown in Figure 4 over
several stages to obtain the best configuration of the system and its operation conditions. The main goal
is to minimize the power costs and losses in the network for different RES integration possibilities.
Initially, the PSO process was initiated by accurately setting the problem parameters, such as; humber
of decision variables involved, their range (lower and upper limit) searching spaces and an initial cost
function, based on a reference power network injection for IEEE 84-bus system. At the same time,
parameters of PSO that are specific to this method such as swarm size or maximum iterations along with
initial inertia weight mingled with their damping ratio and cognitive/social learning coefficients are
appropriately tuned in order to control its well-balanced explorative/explotative searching trend. In the
initialization, each particle is placed in a random position with zero velocity (initial personal and global
best) solutions. The basic optimization is conducted in an iterative manner, where the velocities are
calculated from each particle's personal/PBest and GBest corrections as well as blueprinted via (22, 23,
24) and finally treated for constraints whereby the particles' positions are subsequently updated. During
each iteration, all the computed neighbor positions are analyzed and the local best and global best
solutions are further optimized by a single particle based on weight inertia reducing metric. At
convergence, the algorithm provides the optimal cost (bestCost), its trajectory, and the corresponding
optimal values for power injections and line parameters (including that of switch positions) for use in
further power flow computations, system placement analysis as well as permitting network
reconfiguration strategies designed to improve system operation.

The integration of both PV and WT systems extends the baseline methodology described in Equations
(3) and (4). The addition of PV and WT systems makes the optimization problem much more complex
and dimensional, and a more comprehensive approach must be adopted, even if the overall grid structure
and PSO framework do not change. At this point in the methodology, the simulation analysis is extended
and moved towards grid optimization by introducing the concept of grid reconfiguration. By exploiting
the functionality of the PSO algorithm, switching points are wisely reconfigured to build a new
optimized topology of the network.
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Figure 4. Detailed flowchart of the PSO algorithm
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THE PERFORMANCE EVALUATION

The simulation results that are obtained during the data preprocessing phase are carefully and thoroughly
analyzed during the performance evaluation phase. This phase starts with a full evaluation of important
system performance metrics. In addition to specific best-cost metrics, such as operating cost and
installation efficiency calculated from the initial unoptimized network architecture (Equation 25), this
includes such metrics as voltage deviations from nominal values and total active and passive power
losses.

This first evaluation serves as a crucial standard by which to measure any further advancements. To
measure efficiency and usefulness in practical application, a comparative analysis is performed on
different cases of network reconfiguration with PSO optimization, including the detailed analysis of the
PSO performance (convergence rate, number of iterations, and parameter sensitivity). In order to
explicitly demonstrate the observable benefits in terms of operational efficiency and stability of the
system, one of the main components of this stage is direct and quantitative comparison of critical metrics
in terms of (mostly) power losses and voltage profiles of the original and PSO-optimized reconfigured
topologies, especially for integrated PV and WT generation scenarios. In order to understand the
significance of observed changes, the results of all the simulated scenarios are then extensively compared
with sophisticated statistical analysis and data visualisation methods. The major goal is to provide
accurate fact-based results on the efficacy of PSO-based operating network reconfiguration for the
integration of RES and effective energy trading on TPC distribution network to promote the smart grid
technologies and sustainable energy practices.

Operational Cost:

The overall operation cost that should be minimized is the cost of generation, trading and penalty of the
unsupplied electricity. This can be expressed as equation 26:

N
Ciotal = z 1(&?”&’}? + APSPPS + PEPP + k{SHIFC + HIPP) (26)
1=

Where, P represents the power at time t from different sources (generation, trading, etc.), A; are the cost
coefficients for each generation source. K; represents penalty coefficients for unsupplied electricity.

Power Losses (Active and Reactive Power Losses):

The network is calculated to make power losses and they are defined as equation 27 and 28:

N
Lossactive = z ) Pil,%ss (27)
=

N
§ 1
Lossreactive = i1 Qi,(;:ss (28)
=

Where, p; is the active power loss at node i and time t. Q; is the reactive power loss at node i and time t.
Voltage Deviation:

Voltage deviation is determined in the individual buses and is determined as a difference between the
voltage of the bus and the nominal voltage is presented in equation 29:

Voltage Deviation, , =| Uyt — Upominat | (29)

Where, Uy, is the voltage at bus k and time t. U,omina i the nominal voltage value (usually 1 p.u. or
another reference value).
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Fitness Function (PSO Optimization):

The fitness (equation 30) employed in the PSO algorithm is a mix of cost reduction and maximization
of resilience:

Fitness(x) = w - Cost(x) + (1 — w) - Resilience(x) (30)
Where:
e Cost(x) represents the total cost.

e Resilience(x)is a measure of the system's robustness to uncertainty in renewable generation,
which can be represented as equation 31:

Resilience(x) = Var(APRg) (31)
Where, Var(APRE) is the variance of the uncertainty in renewable energy generation (solar and wind).
SIMULATION RESULTS

Particle Swarm Optimization (PSO) algorithm was developed with the help of MATLAB (R2021b) and
its extensive optimization toolbox and big data solutions. The power flow calculations were also done
with MATLAB by the Newton-Raphson method, and custom scripts were written to simulate the
network. All the information, all calculations, all graphs, voltage profiles, power loss curves, all were
handled and analyzed in the environment of MATLAB, which made the implementation comprehensive.

This study used the IEEE 84-bus model of power distribution network, which is a standard of power
distribution research. The dataset will contain data about 84 buses and 120 branches and will have initial
power injections of 1200 MW. It can also deliver bus information, line impedance (resistance and
reactance), switch status to reconfigure and renewable generation (PV and WT) information, including
capacity and output. It is possible to simulate the network performance with various configurations due
to the data.

In this section, experimental results that have been obtained through the application of advanced
optimization techniques to substantially improve the operational efficiency and overall performance of
the TPC distribution network under various difficult conditions are presented and discussed. The
empirical findings are carefully arranged and presented in three different but incrementally difficult
operations to show the progressive improvements as follows.

A baseline is established by analyzing the TPC network’s performance under standard operating
conditions, without renewables or optimization.

e Complexity is increased by introducing combined PV and WT generation, demonstrating PSO’s
role in optimizing network performance under variable conditions.

e The integration of PSO-optimized reconfiguration techniques is evaluated, highlighting
improvements in power flow, loss reduction, and voltage profile stability.

This structured presentation clearly delineates the advantages, practical implications, and overall
contributions of the developed optimization techniques to modern power distribution network
management.

Configuration 1: baseline

This section contains the main outcomes of simulation results for the TPC distribution network under
baseline conditions (Configuration 1). The TPC network was first simulated without considering the
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integration of PV and WT renewable energy sources, and also without considering the application of
PSO optimization methods. The baseline scenario is intended to provide a quantitative performance
standard to measure the future effect of the integration and optimization methods of RES.

Power Losses Analysis

Power losses, mainly due to the resistive and reactive nature of the components in the network, is an
inherent and very critical aspect of power system operation. Baseline simulations for the TPC
distribution network showed that the total active power loss was 4.924 MW. These losses are mostly
due to line impedance, transformer inefficiencies, and voltage drops, underscoring the importance of
robust system design and efficient operational strategies. In order to maintain high transmission and
distribution efficiency, mitigate excessive energy dissipation, and ensure continuous reliability (all of
which are critical for grid stability and economic viability), such measures are essential.

Overall System Cost (Best Cost)

This section evaluates the baseline operating cost and voltage stability of the TPC network. Under
baseline conditions, the optimal operating cost of the TPC distribution network was calculated to be
$6.7931/MWHh, which is an important factor in energy system management. Based on the principles of
optimal economic dispatch, this measure is the most economical method for reliably meeting demand
while taking into account restrictions of the grid, ensuring quality of supply, reliability and economic
viability. Fig. 5 shows the voltage profile for various buses, which is an important instrument for
evaluating the voltage stability under baseline conditions. This visualization gives very important insight

into the intrinsic voltage profile and potential anomalies which can help to identify areas for
improvement in the next optimization steps.
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Figure 5. Voltage Profile of the TPC distribution network under baseline operating conditions

Configuration 2: TPC with renewables and PSO

This section presents the full results from configuration 2, which is a considerable improvement by
combining a hybrid renewable energy portfolio that includes both PV and WT sources. The PSO
algorithm is used for the optimization of the TPC network's operational parameters under the integrated
renewable energy conditions. Despite the complexity added by the PV and WT integration, the PSO
algorithm is able to find the best power injection strategy to keep the grid stable.

Optimal Placement of PV and WT Systems for Hybrid Integration

Table 6 shows systematically the optimal bus location for both PV and WT systems in the TPC microgrid
segments. This precise and optimized allocation of both PV and WT units is thus a critical enabler A
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fundamental aspect of achieving the enhanced performance in configuration 2 is the meticulous
determination of optimal placement for both PV and WT distributed generation units. Figure 6 offers a
visual representation of the segments of the microgrid and the initial integration points for PV and WT
systems to determine the most favorable bus locations for all the renewable energy sources in this hybrid
case. Such strategic position is important to maximize the utilization of renewable energies, minimize
active power losses, improve voltage profiles and enhance overall grid stability under variable
generation conditions for the efficient and reliable operation of TPC network under high penetration of
diversified renewable energy.

Power Losses, Cost Optimization, and Voltage Profile Enhancement

This section analyses the performance of TPC's distribution network under configuration 2 which reveals
substantial gains following the optimal incorporation of both PV and WT systems, drastic reduction was
observed in respect of energy losses and operational costs with respect to the baseline values. The PSO
algorithm was repeated 200 times so that the optimal energy configuration can be reached, and its
convergence performance is plotted on Figure 7. For the case of cost, the optimization started from 9.0
$/MWh and fell steeply to 5.0 $/ MWh in the first iteration and then converged at optimal 2.1011
$/MWh after nearly 140 iterations, thereby confirming the ability of PSO in solving complex problems
over an enlarged solution space. As shown in Figure 8, and the voltage profile in Figure. When
compared with the un-optimized baseline, the total active powers losses have been achieved
significantly from 4.924 to 0.0021 MW meanwhile. The main key performance indicators results are
listed in Table 7, which indicates the efficient integration of hybrid renewable energy is achieved with
PSO optimization. Overall, these findings unambiguously reveal a significant cost-effectiveness
improvement in voltage stability and power loss reduction for the integration of hybrid PV-WT systems
into the TPC network through PSO-best methodology.
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Figure 6. Schematic Diagram of the IEEE 84-Bus TPC Distribution Network, illustrating the optimized topology
with MG1 and MG2 segments, alongside the strategic placement of integrated PV and WT generation systems.
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Table 6. Optimal placement locations for PV and WT systems within the TPC distribution network microgrids

Microgrid Segment | Bus Number (PV / WT Location)
MG 1 (Green) Bus 42 - PV
MG 1 (Green) Bus 44 - WT
MG 2 (Yellow) Bus 84 - PV
MG 2 (Yellow) Bus 60 - PV
MG 2 (Yellow) Bus 84 - WT
MG 2 (Yellow) Bus 34 - PV
MG 2 (Yellow) Bus 43 - WT
MG 2 (Yellow) Bus 46 - PV
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Figure 7. Convergence curve of the PSO algorithm for
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Figure 8. Per-Unit Voltage Profile of the TPC
Distribution Network under Optimized Hybrid PV-WT
Integration

Table 7. Key performance indicators and PSO algorithm parameters for the TPC distribution network under

optimized hybrid PV-WT integration

Parameter Value
Number of Iterations 200

Best Cost ($/MWh) 2.1011

Total Power Losses (MW) | 0.0021
Number of Search Agents 10

Configuration 3: Network Reconfiguration

This section presents a thorough analysis of the performance of the TPC distribution network under
Configuration 3 that provides an introduction to the reconfiguration of the network dynamically. The
combined integration of distributed generation and network reconfiguration is expected to provide a
better performance than the previous configurations. Detailed findings and discussions will discuss
network reconfiguration scheme and topology, and further analysis of power losses and cost
optimization, convergence analysis, enhanced voltage profile, and overall performance comparison.

Network Reconfiguration Scheme and Topology

This subsection explains how to strategically reconfigure the switches to change the flow of power and
increase the thermal efficiency. The resulting optimized network topology, which is a visual
representation of changed switch states and MG1 and MG2 delineation, is shown in Figure 9. Optimal
switch locations in order to minimize losses and maximize efficiency are systematically given in Table
8. The implementation of coordinated reconfiguration, in addition to the continued PV and WT
integration led to significant extra reductions in both energy losses and operational costs.
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Power Losses, Cost Optimization, and Voltage Profile Enhancement

As shown in the convergence curve shown in Figure 10, the optimization process started with the initial
best cost of $8.0/MWh, and quickly lowered to 5.2 $MWh, and settled on a very low value of only
1.954 $/MWh by iteration 120, proving better economic performance. A direct comparison with the
results obtained for Configuration 2 indicates that the total power losses were further decreased from
0.0021 MW to 0.002 MW and the best cost was improved from 2.1011 $/MWh to 1.954 $/MWh.
Compared with the baseline system without the integration of renewables, the power losses were greatly
reduced from 4.924 MW to only 0.002 MW, which undoubtedly demonstrated the dramatic
improvements in energy efficiency and cost-effectiveness. Figure 11 shows the improved stability of
voltage with the voltage profile showing minimum fluctuations over the system buses. The culmination
of all these performance indicators is summarized in Table 9. The synergistic integration of PV and WT
systems with strategic network reconfiguration certainly presents the best performance of all tested
configurations, which can be considered as an important strategy to optimal cost and loss reduction for
modern energy distribution systems.

Table 8. Optimal placement locations for PV systems within the TPC distribution network microgrids

Microgrid Segment | Bus Number (PV Location)
MG 1 (Green) Bus 12
MG 1 (Green) Bus 20
MG 1 (Green) Bus 29
MG 1 (Green) Bus 31
MG 1 (Green) Bus 43
MG 1 (Green) Bus 36
MG 1 (Green) Bus 55
MG 2 (yellow) Bus 52
MG 2 (yellow) Bus 62
MG 2 (yellow) Bus 70
MG 2 (yellow) Bus 79
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Figure 9. Reconfigured topological representation of the TPC distribution network with integrated PV systems and
microgrid segmentation
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Figure 10. Convergence Curve of the PSO algorithm for PV, WT Integration with Network Reconfiguration
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Figure 11. Per-Unit Voltage Profile of the TPC Distribution Network under Optimized PV, WT Integration with
Network Reconfiguration

Table 9. key performance indicators and PSO algorithm parameters for the TPC distribution network under
optimized PV, WT integration with network reconfiguration

Parameter Value
Number of Iterations 200
Best Cost ($/MWh) 1.954
Total Power Losses (MW) 0.002
Number of Search Agents 10
DISCUSSION

This study offered a thorough comparative analysis of several power distribution network configurations
with significant beneficial aspects of incorporating renewable energy systems with dynamic grid
reconfiguration. The main objective was to obtain an optimal energy trading scheme within the power
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distribution network, and the results always prove the excellent performance of this advanced
configuration on the aspects of voltage stability, power loss reduction and total cost reduction. One of
the most important ones is the significant improvement in voltage stability achieved by strategic
reconfiguration of the network.

Table 10. Comparative performance evaluation of key optimal metrics for different system configurations

Parameter PV and WT (Configuration 2) PV and WT, Reconfiguration (Configuration 3)
Best Cost ($/MWh) 2.1011 1.954
Total Losses (MW) 0.0021 0.0020
NO of Search Agents 10 10
Iterations 200 200

The multi-stage optimization process consistently showed that energy trading augmented with network
reconfiguration represents the most optimal methodology. This configuration yielded the best results in
terms of cost-effectiveness, substantial power loss reduction, and superior voltage regulation. The final
optimized scenario achieved the lowest recorded operational cost of $1.954/MWh and remarkably
reduced total active power losses to 0.002 MW. These figures represent a drastic improvement compared
to the initial baseline system without renewable integration or optimization, where power losses were as
high as 4.924 MW and operational costs were significantly greater. The comparative analysis of two
distinct configurations, standard PV-WT integration versus reconfigured PV-WT operation, revealed a
clear progression in performance improvements. The reconfigured PV-WT system exhibited the fastest
convergence rate and achieved the lowest operational cost, proving to be the most efficient and optimal
solution. Further detailed performance evaluations of these configurations, including best cost and total
power losses, are systematically presented in Table 10. This table robustly confirms the superiority of
the reconfiguration approach, as it consistently provided the minimum best operational cost of
$1.954/MWh and achieved the lowest total power losses of 0.0020 MW.

CONCLUSION

This study proves that combining the hybrid photovoltaic (PV) and wind turbine (WT) generation
systems with dynamic network reconfiguration can greatly improve the performance of the modern
distribution networks. The suggested method is quite effective to lower the operation costs and the lost
power, enhance the voltage stability and network performance. To be more precise, the outcomes of
optimization revealed that operational costs (minimized to $6.7931/MWh at baseline) decreased to
1.954/MWh in the final structure, whereas the power losses dropped to 0.002 MW, which is a drastic
drop in comparison to 4.924 MW. These gains justify the fact that the suggested strategy can result in
energy distribution optimization and achieve optimal smart grid efficiency. The statistical results proved
the advantage of the PSO-based optimization, in which 200 iterations of the algorithm are convergent
and optimal metrics of the cost and power losses are in proper agreement with optimal network
operation. The voltage profiles also demonstrated the increased stability with the integrated hybrid
renewable energy setup, with the significance of the best location and rearrangement of the grid
elements. The proposed research may be extended in future studies by using real-time data and adaptive
control systems, which would enhance the ability of the grid to react to changes in the amount of
renewable energy generated. Also, the addition of energy storage systems might be considered as the
next higher step in flexibility, as well as decrease intermittency and the system stability and reliability
on the whole. Lastly, multi-objective optimization frameworks might also be useful to add other
considerations like environmental impact, grid resilience and cost-effectiveness to guarantee a more
holistic approach towards optimization of smart grid environments.
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