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SUMMARY

High-precision crop type mapping is fundamental for agricultural monitoring, food security assessment,
and sustainable land management. Recent breakthroughs in Earth observation and machine learning (ML)
have greatly enhanced the potential for satellite data to capture crop phenology, spatial variability, and
temporal variations. This paper conducts a systematic review of over 30 satellite-based crop type mapping
studies, covering satellite data sources, multi-sensor fusion techniques, and classification models. The
quantitative meta-analysis of the reviewed studies indicates that the fusion of optical and synthetic
aperture radar (SAR) data can enhance overall classification accuracy by 0.2% to 0.6%, especially in
areas with high spatial variability and frequent cloud cover. In addition, ensemble learning and deep
learning models have been found to outperform conventional classifiers, with substantial improvements
in both accuracy and robustness for various agro-ecological zones. Pixel-level fusion methods have been
found to be the most effective means of enhancing crop type discrimination and area estimation.

Key words: satellite crop classification, multi-sensor data fusion, optical-SAR integration, time-series
vegetation indices, deep learning in remote sensing, cloud-based crop monitoring.

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N " 34 1297


mailto:malin@karunya.edu
mailto:vkoduri38905@ucumberlands.edu

Benazir Meerasha, et al: Advanced soft ... ... Archives for Technical Sciences 2025, 34(3), 1297-1306

INTRODUCTION

High-precision crop type mapping is an essential component of modern agriculture, allowing for
efficient crop phenology monitoring, food security analysis, and sustainable land use. During the last
decade, the Earth observation (EO) technology development has led to a significant increase in the
availability, variety, and temporal resolution of satellite imagery [1]. Classical classifiers, such as
Support Vector Machines (SVM) and Random Forests (RF), have shown high performance in high-
dimensional feature spaces, while deep learning models, including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and attention models, are highly effective in modeling
spatial, temporal, and multi-sensor relationships [2]. Furthermore, cloud computing platforms, such as
Google Earth Engine, have facilitated large-scale and near-real-time crop mapping, allowing for
applications ranging from field to global scales [3].

Recent studies have demonstrated the advantages of multi-sensor fusion, especially the combination of
optical and SAR images, which improves crop type classification accuracy and overcomes the
limitations of cloud contamination. However, there are still challenges in sensor fusion, model
transferability, ground truth scarcity, and the trade-off between model complexity and practicability [4].
This review systematically integrates more than 30 recent studies on crop mapping, analyzing sensor
data sources, feature representation techniques, fusion techniques, and machine learning algorithms [5].
Following are the main contributions:

e Systematic integration of more than 30 recent studies on crop type mapping, comparing different
sensors, fusion schemes, and machine learning techniques.

o In-depth analysis of fusion and classification schemes, with a special focus on pixel-level fusion
and its practicability.

e Research gap identification, including sensor fusion, ground truth scarcity, and model
transferability.

The rest of this paper is structured as follows. Section 2 presents a literature review on crop images,
focusing on radar and optical satellite data. Section 3 introduces a new Review Methodology section.
Section 4 presents an overview of data fusion techniques and machine learning methods, while Section
5 offers a comparative assessment of accuracy levels and new trends. section 6 presents a comparative
evaluation of the proposed model with existing state-of-the-art techniques to assess its effectiveness and
reliability. Section 7 addressing these gaps and challenges will pave the way for developing more
efficient systems in future research. Finally, Section 8 concludes this paper by summarizing the main
findings and future research avenues for crop mapping applications.

SATELLITE DATA SOURCES
Radar and Optical Data

Its effectiveness stemmed from the correlation between plant physical characteristics, phenology, sensor
measurements, making it valuable for crop analysis. With the advent of radar data, researchers have
turned their attention to the synergies between the two sources and the connection between
backscattering and crop attributes [6].

(Table 1) Sentinel-1 SAR and Sentinel-2 multispectral data are the two most used satellite datasets as
they can sense different aspects of crop monitoring with their simultaneous high temporal rates of return
and open access provision [7]. Pixel-level fusion is the most common method because it combines
spectral, backscatter and texture features in an efficient way. Regarding classifiers, Random Forest is
the most adopted algorithm, being robust with high-dimensional features and lack of training samples
followed by Support Vector Machines and more recently deep learning models [8]. These results
illustrate a tradeoff between methodological reliability, data richness, and operational feasibility in large
scale crop mapping [9].
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Table 1. List of satellite datasets and methods used

Author (Year) Method/Approach Satellite Dataset(s) / Sensor(s)
Caietal., 2018 Time-series analysis with machine Landsat 5, 7, 8
learning

Mansaray et al.,

Optical and microwave remote

Sentinel-1A (VV, VH polarization),

2017 sensing analysis Landsat 8 (OLI)
Kussul et al., SAR and optical imaging over Landsat-8, Sentinel-1A (C-band,
2018 multiple time periods 2015-2016), Sentinel-2
Forkuor et al., Sequential masking classification TerraSAR-X, RapidEye, Sentinel-
2015 1A SAR
Foerster et al., Phenological data and spectral- 35 Landsat images
2012 temporal profiling
Skakun et al., Multi-temporal crop classification Landsat 8, Radarsat-2 (C-band)
2016
Zheng et al., Time-series NDVI analysis 24 scenes from Landsat 5 TM and 7
2015 ETM
Sarzynski et al., Combination of radar and optical Landsat 8, SAR
2020 imagery via GEE
Huetal., 2021b Random Forest supervised Sentinel-1 and Sentinel-2
classification

Sun et al., 2022

Deep learning

Sentinel-1 and Sentinel-2

Kaplan et al., Estimation of vegetation variables Sentinel-1 and Sentinel-2
2023

Habibie et al., | Land cover classification using GEE Sentinel-1 and Sentinel-2
2024 and CNN1D

REVIEW METHODOLOGY AND FEATURE EXTRACTION

NDVI is a valuable indicator of the presence of photosynthetically active plant life. Traditional
approaches of parametric and nonparametric classification from an image had produced inefficient
outputs [10]. As a result, phenological data is required to create a unique growth model for each crop
type based on spectral temporal profiles [11]. They enable the extraction of physiologically relevant
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Figure 1. Overall architecture of the proposed soft computing-based crop mapping framework
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Phenological properties have been used to characterize cultures in several recent research [12]. for
example, exploited spectral features at specified dates to derive phenological metrics that revealed
interior physiological properties. These variables allow decision rules to be built to do an autonomous
crop extraction. (Figure 1) The methodology flowchart presents a logical organization guiding the
review from data collection to synthesis. The review initially describes the sources used, such as SAR
and multispectral datasets to provide a knowledge about sensor performance and limitations [13]. The
review then discusses feature extraction, involving spectral indices, backscatter and texture features that
allow efficient depiction of the information. Based on these data fusion inputs, different strategies of
data fusion are systematically surveyed focusing on pixel-level methods to combine multiple sources of
information [ 14]. The structure then leads the discussion to classification and machine learning solutions
that directly depend upon feature quality and fusion strategy. Lastly, the review concludes with
accuracy comparison of different studies, trend-pattern identification, and research gap recognition
[15][16][17][18][19][20].

Vegetation Indices

The spectral variations in vegetation response across various bands are exploited by NDVI which are
described in (1) — (3):

NDVI = (NIR —IR) / (NIR + IR) 1)
SAVI= (1 + L) = (NIR —R) (NIR +R + L) )
MSAVI=[2+*NIR+1 —v (2 * NIR +1)2 — 8 = (NIR — RED]/2 3)

The crop cycle is statistically represented by the indices that display temporal fluctuations [21]. For
charting agricultural phenological development, the NDVI is still the most often used indicator the
Enhanced Vegetation Index defined in Equation (4).

EVI= 25% ((NIR) — (R)/NIR+6%R —75%B + 1 4)

The models that follow concentrate on biomass productivity and vegetation height. Crop-specific
phenological dynamics are captured using the Rice Mapping Index described in Equation (5):

RMI(NIR) = NIR1(Harvest) — NIR1(transplanting)NIR1 + NIR1(transplanting) (5

[22] derived RVI for cotton crop growth phenology. Structural crop growth characteristics derived from
SAR backscatter are represented by the Radar Vegetation Index in Equation (6):

40
RV =—¥ (6)
Oyy + Ovh

PIXEL-LEVEL DATA FUSION

Based on a pixel basis, image fusion combines optical and radar data to improve textural and spatial
resolution while preserving spectral accuracy [23]. Principal component analysis, intensity-hue-
saturation, wavelet transforms, and hybrid approaches are the most used fusion techniques. These
methods have been categorized based on component substitution, multi-resolution, and hybrid
techniques. Further this enhances its improved fusion methodologies [24].

Component Substitution Techniques

PCA is a commonly used method for pixel level data fusion that effectively minimizes data redundancy
while preserving key information [25].
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In agricultural areas, HPF fusion performs better than other pixel-level fusion approaches. In another
study by [26], it was found that while the HPF method improves wheat classification accuracy, it doesn't
enhance vineyard classification accuracy. Based on the combination of Landsat and RADARSAT
images reveals finer landscape details compared to using each dataset independently [27]. Specifically,
employing the BT approach results in an image that effectively distinguishes between forested areas and
cultivated rice fields [28].

Multi-Resolution Analysis

Each level of the pyramid is linked to a channel with reduced resolution and corresponding spatial
characteristics. Wavelets and curvelets are two of the most utilized multi-resolution analytic tools. The
fusion method based on wavelets combines spatial information from SAR imaging with optical images,
minimizing distortion of spectral information. PALSAR data. could be a very viable technique for urban
regions, but not for rural areas. While the implementation of DWT enhances the identification of wheat
fields in contrast to different land cover categories like residential or pasture, its impact on the overall
accuracy is relatively minimal with alternative [29].

The benefit of image-fusion approaches in agricultural remote sensing is highly dependent on similarity
of crops, atmospheric limitations, resolution of sensor and heterogeneity of landscape. When crop
classes are spectrally similar (e.g., cereals at similar phenological stages), feature-level and model-
based fusion, more precisely deep learning based on spectral-temporal signatures can outperform pixel-
level fusion by capturing subtle textural and temporal variation. In the case of persistent cloudy
conditions, SAR—optical fusion and spatiotemporal fusion methods are more effective since radar data
provides all-weather continuity while optical data maintains crop biophysical sensitivity. For high spatial
detail demands (field-scale management), separation methods (including pan-sharpening and spatial—
spectral fusion) work well in relatively homogeneous landscapes, and object-based or deep neural fusion
is better for complex, heterogeneous landscapes when mixed pixels dominate. In general, pixel-level
fusion can adapt to uniform high-quality image conditions where the traditional pixel level is suitable
for crop mapping [30].

MACHINE LEARNING & DEEP LEARNING MODELS

Various categorization algorithms are used in crop mapping. Support Vector Machine, Decision Tree
(DT), and Random Forest (RF) classifiers have been the primary options for identifying remote sensing
images in recent years [31] had improved the crop classification accuracy of multiple algorithms such
as weighted KNN subspace KNN (ensemble classifier) cubic SVM quadratic SVM Median Gaussian
SVM. To generate spatial-spectral embedding for each date pixels undergo processing by shared
consecutive MLPs. It obtained an overall accuracy of 0.93. [32] used Decision Tree Classifier and
Random Forest algorithm to classify crop type.

Random Forest and Deep Neural Networks to employ deep learning methods in modelling the early and
late sowing of cotton and soybean crops. [33] utilized LSTM and BiLSTM models, which demonstrated
significantly faster processing speeds with GPU acceleration compared to the methods of traditional
machine learning classification. In a UNet model trained in Arkansas using CDL and Landsat data was
transferred to US and China locations to map corn and rice. They discovered that spectral values differed
for the same crops among regions, making direct model transfer difficult. They developed an approach
to improve data consistency and thereby effective transfer of models for crop mapping globally, by
adjusting windows to better match up sow and growth phases specifically in target areas of interest [34].

High-resolution reflectance dataset for the Huaihe basin by combining Sentinel and Landsat data using
Google Earth Engine (GEE). Using this dataset, the accuracy was 88.87% (Kappa 0.78; Mean Kappa
0.775) and a phenological type-based crop intensity map was developed. This dataset has the potential
to improve grain yield prediction and assessment of ecosystem impacts on a regional scale. A method
of contrastive learning was introduced to combine the representations. To instill a more compact model,
the partial weight-sharing principle has been introduced and built a more efficient late feature-level
fusion network. This approach facilitated better feature discrimination for different input sizes over

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N " 34 1301



Benazir Meerasha, et al: Advanced soft ... ... Archives for Technical Sciences 2025, 34(3), 1297-1306

conventional supervised approaches. A study analyzed deep learning techniques in wheat farming to
suggest an ontology-centered knowledge management platform. This system aims to facilitate the
cataloging of objectives investigated, preprocessing methods, models used, datasets employed, and
outcomes obtained. They conclude that deep learning provides a cost-efficient, robust, and accurate
alternative in the measurement of wheat traits compared to traditional methods and a step forward in
high-throughput phenotyping for future research. [35] evaluated three vegetation detection methods: two
were deep learning-based models and one was an object-based NDVI-ML method combining computer
vision and machine learning. Their results further indicated NDVI-ML approach provided superior
performance compared with deep learning models including DeepLabV3+ with RGB bands. However,
they found that the differences in types of images of training and testing data made it hard for deep
learning approaches to achieve good results. Nevertheless, a comprehensive analysis of deep learning
techniques for environmental RS has been released. MODIS, which has a higher temporal resolution
than Landsat (a 16-day cycle) and can penetrate clouds, is noted as the preferred RS sensor and NDVI
is the most used feature.

Equally important is the deployment of existing technological tools. Integrating Sentinel-1 backscatter
GRD into GEE streamlines the process by removing the need for humans to handle and store large
datasets and allowing algorithms to work directly with the data.

An overall accuracy 91% with a kappa coefficient 0.90 was achieved at Coalville, UK study area. In
another study by [36], corn and soy were the identified crops.

PERFORMANCE COMPARISON

The findings underscored the advantages of utilizing Shortwave Infrared (SWIR) bands instead of the
commonly used v Near Infrared (NIR) and visible bands in crop classification and it exhibits a 10 to
15% increase in accuracy [37]. The optimal band combination was determined to be the green band. In,
crop classification included Mature Rubber, Shrub/Orchard, Forest, Mangrove, Palm Oil, Paddy field
and Built-up area. Compared to Landsat data alone, which produced accuracy between 91.20% and
91.93%, the combination of Landsat and SAR data produced the best unbiased worldwide accuracies,
ranging from 92.96% to 93.83%. (Ajadi et al., 2021), focused on soybean and corn classification
classified cotton crop combining Sentinell and Sentinel2.

Table 2. Comparative analysis of existing methods

Literature Survey Model / Method Overall Accuracy (%) | COE (%)
Yang et al., 2021 SVM 85.98 14.02
Jayatrao Mohite et al., 2020 RF 13.55
Jayatrao Mohite et al., 2020 DNN 89.15 10.85
Ramalingam et al., 2019 | Unsupervised Classification 76.24 23.76
Kaplan & Rozenstein, 2021 Linear Regression 70.00 30.00
Luo et al., 2021 RF 89.75 10.25
Ge et al., 2021 U-Net 87.00 13.00
Yuan et al., 2023 Self-Supervised Learning 88.17 11.83
Fuetal., 2023 ML (TWDTW) Method 90.74 9.26
Habibie et al., 2024 CNN 1D 78.00 22.00

RESEARCH GAPS & CHALLENGES

In general, the literature in Table 2 reflects a trend of performance enhancement from conventional
statistical and classical machine learning methods to deep learning models. Conventional approaches
like linear regression (70%) and unsupervised classification (~76%) have a limited ability to capture the
complex, non-linear relationships that exist in satellite time series data. Supervised machine learning
algorithms like SVM (85.98%) and RF (86.45-89.75%) provide better performance, especially when
adequate training data and proper feature representation are considered [38].
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Accuracy vs Classification Error (COE) Comparison
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Figure 2. Comparative performance analysis: accuracy Vs error comparison

Deep learning models further improve the classification accuracy by exploiting spatial, spectral, and
temporal relationships in multi-source data. Models like DNN (89.15%), U-Net (87%), self-supervised
learning (88.17%), and TWDTW-based ML (90.74%) always perform better than most traditional
methods. However, the improvement in accuracy over optimized RF and SVM models may be marginal
in homogeneous landscapes and simple classification problems. However, the relatively poor
performance of CNN-1D in some studies clearly indicates that the benefits of deep learning are still
highly sensitive to model architecture, data requirements, and the size of the training dataset [39]. Figure
2 is a comparative graphical representation of the overall classification accuracy (%) of different
machine learning and deep learning models as reported in the literature. The comparison also
encompasses traditional methods like Linear Regression (70%) and Unsupervised Classification
(76.24%), ensemble learning techniques such as Random Forest (85.98-89.75%), deep learning
techniques including DNN (89.15%), U-Net (87%), and CNN 1D (78%), and advanced techniques such
as Self-Supervised Learning (88.17%) and the ML-based TWDTW approach (90.74%). The
Classification Error (COE), calculated for different machine learning and deep learning techniques [40].
Lower values of COE represent better classification accuracy, and the TWDTW-based ML technique
has the lowest error rate (9.26%), followed by Random Forest and deep learning techniques

CONCLUSION

This review illustrates a ranking of crop classification accuracy, emphasizing the evolution from
conventional statistical and machine learning techniques to sophisticated deep learning models.
Traditional approaches, such as linear regression and unsupervised classification, indicating a lack of
ability to capture complex relationships in satellite imagery. Supervised machine learning algorithms
exceed 88% accuracy with some studies reporting accuracies above 90% in multi-sensor or dense time-
series crop classification tasks. The importance of multi-sensor fusion is illustrated to be essential for
accurate crop mapping in challenging scenarios like cloud-contaminated areas or heterogeneous regions.
Pixel-level fusion enables efficient processing of large-scale crop classification datasets. Despite such
achievements the variability of model performance based on regions and seasons, and the trade-off
between accuracy, interpretability, and efficiency. Future studies should focus on providing standardized
benchmark datasets and statistically sound evaluation methodologies, as well as efficient and
interpretable deep learning models. Moreover, self-supervised and transfer learning methods can
alleviate the need for large amounts of labeled data, especially in data-scarce areas. Cloud-native
platforms with multi-sensor fusion and real-time analytics capabilities will play a critical role in the
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development of scalable crop monitoring systems for sustainable agricultural practices and global food

security.
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