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SUMMARY  

Rapid and accurate assessment of civic infrastructure following a natural or artificial disaster is 

essential to planning emergency response and recovery. This paper introduces a control system based 

on deep reinforcement learning (DRL) to coordinate unmanned aerial vehicle (UAV) swarms and 

methodically approach the post-disaster infrastructure inspection. The multi-UAV coordination problem 

is formulated as a cooperative Markov decision process, enabling the learning of optimal policies for 

navigation, coverage, and collision avoidance under highly dynamic, uncertain conditions in disasters. 

The training-and-decentralized-execution paradigm is centralized to provide scalable swarm behavior 

while retaining real-time operational feasibility. The simulation experiments are conducted in real post-

disaster urban settings marked by damaged structures, blocked streets, and limited communication. The 

average spatial coverage of the proposed DNR-controlled swarm is 91.6 decision steps, which is better 

than that of the rule-based and heuristic baselines (138.4 and 126.7 decision steps, respectively). The 

trained policy incurs a 34.2% lower cumulative navigation cost and maintains a stable inter-UAV 

separation, with a variance of less than 0.12 across multiple trials. Convergence of the policy is 

obtained in 2,150 training episodes, which is more than 3,900 training episodes in the case of baseline 

learning methods. The statistical analysis of 50 simulation runs indicates that dispersion in mission 

completion time was reduced by 27.5% and coverage uniformity improved by 22.8%. Moreover, the 

trained system shows robustness to partial failures of UAVs and adaptable obstacles, as training is not 

needed. These results verify that deep reinforcement learning offers a powerful and effective tool for 

autonomous swarm UAV deployment in post-disaster civil infrastructure inspection, aiding timely 

situational awareness and evidence-based decision-making within disaster management agencies. 

Keywords: deep reinforcement learning, UAV swarm coordination, post-disaster infrastructure 

assessment, autonomous aerial systems, multi-agent systems, disaster response robotics, intelligent 

control systems. 

INTRODUCTION 

Timely and precise disaster evaluation is central to reducing secondary losses and facilitating sound 
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decision-making during post-disaster recovery of civil infrastructure. More natural hazards, such as 

earthquakes, floods, and cyclones, normally cause extensive structural damage, disruption to transport 

systems and utilities, and it is slow, unsafe, and incomplete to conduct ground-based inspections. 

Conventional methods of assessment rely heavily on manual surveys and fixed-sense infrastructure, 

which are neither flashy nor area-wide. Recent reports highlight the importance of intelligent and 

autonomous systems that can quickly and at scale gain situational awareness and dynamically adapt to 

a moving disaster area [4][5]. UAV-based evaluation is one solution because it is mobile, provides 

high-resolution sensing, and can be used in obstructed or dangerous locations. Combined with 

sophisticated control and learning systems, UAV systems have the potential to increase the stability 

and speed of post-disaster infrastructure assessment significantly. 

 

Figure 1(a). Conceptual framework of swarm UAV–based disaster assessment 

Figure 1(a) shows a swarm of UAVs flying over an urban area affected by a disaster to collect data in 

the form of images and sensor readings, which are then processed by a deep reinforcement learning 

system to provide optimal navigation and task allocation instructions. The results are detailed 

evaluation findings, which are a coverage map and a report of the damage, and illustrate the 

combination of autonomous swarm intelligence and learning-based control to enable effective post-

disaster infrastructure inspection. 

These capabilities are further extended by the use of swarm UAVs, which enable cooperative sensing, 

adaptive coverage, and fault tolerance during large-scale assessment missions. Swarm-based systems, 

unlike single-UAV-based systems, decentralize sensing and navigation across multiple agents, thereby 

saving mission time and enhancing spatial redundancy. The swarms are capable of functioning despite 

the limitation of communication or partial failure of the agents in cooperative search, coverage control, 

and information sharing [7][10]. The experimental evidence confirms that the collaboration of multiple 

UAVs can significantly improve the uniformity of damage detection and the coverage of areas under 

post-disaster conditions [4]. Moreover, swarm UAVs may be equipped with onboard perception 

models to classify damage, enabling near-real-time assessment of infrastructure conditions based on 

collected aerial imagery [6]. Nonetheless, the decentralized and dynamic characteristics of swarm 

systems create difficult coordination challenges, especially in cluttered urban environments where 

obstacles, uncertain terrain, and changing mission priorities must be addressed concurrently. 
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Figure 1(b). System architecture of DRL-controlled swarm UAV framework 

This illustration (Figure 1(b)) shows the stacked design of the proposed swarm UAV system that is 

based on deep reinforcement learning. It shows that UAV agents with sensors and actuators share 

information over an inter-UAV network, enabling decentralized control. The centralized learning layer 

learns shared policies from interactions with simulated or real-world disaster scenarios, and the 

decision output layer converts these policies into a navigation command structure and task allocation. 

This architecture emphasizes the integration of sensing, communication, learning, and autonomous 

control to enable effective, responsive post-disaster infrastructure assessment. 

Deep reinforcement learning (DRL) has also become a potent control mechanism for handling this 

complexity and coordinating swarms of UAVs. DRL enables agents to learn optimal policies by acting 

in the environment, enabling adaptive decision-making without explicit modeling of the system 

dynamics. Recent studies have shown that DRA-based swarm control approaches are more efficient in 

coverage, collision avoidance, and task distribution in uncertain environments than rule-based and 

heuristic approaches [2][7]. Multi-agent reinforcement learning and meta-reinforcement learning also 

contribute to increased flexibility across various disaster scenarios and operational constraints [1][3]. 

DRL enables swarms of UAVs to balance exploration and exploitation, dynamically re-document 

tasks, and coordinate in the presence of delays in recovery and agent loss [9]. Swarm systems based on 

DRLs can offer an intelligent, scalable model of autonomous post-disaster civil infrastructure 

assessment when integrated with models of vision-based perception and situational awareness [8]. 

This paper presents several contributions to autonomous aerial disaster assessment. First, it develops a 

post-disaster civil infrastructure assessment using swarms of UAVs as a collaborative deep 

reinforcement learning challenge, enabling collective optimization of coverage, navigation efficiency, 

and collision avoidance in an uncertain, dynamically changing environment. Second, a decentralized 

implementation and a centralized training system are created to enable scalable swarm coordination 

and maintain real-time operational viability. Third, the offered system of controls is confirmed in the 

context of real post-disaster urban environments, including damaged infrastructure, route blockages, 

communication limitations, and partial UAV crashes. Fourth, an accurate performance assessment 

indicates enhanced spatial coverage consistency, reduced variability in mission completion time, 

consistent inter-UAV separation, and accelerated policy convergence compared to traditional rule-

based and heuristic methods. Last but not least, the research also provides quantitative information on 

learning stability and robustness, with the swarm-control-based deep reinforcement learning showing 

potential for reliable and resilient post-disaster infrastructure assessment. 

The rest of this paper is structured in the following way. Section II provides an overview of the 

existing literature on disaster assessment by UAVs, swarm intelligence, and deep reinforcement 

learning control mechanisms. Part III explains the suggested swarm UAV design, educational system 

and experimental procedure. Section IV presents the performance assessment and the comparative 
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outcomes of simulated disaster situation. Section V gives a detailed discussion of the findings, 

limitations, and future research implications and Section VI wraps up the paper, summarizing the main 

contributions, and identifying future directions in the development of learning-based swarm UAV 

systems in the field of post-disaster assessment of civil infrastructure. 

LITERATURE REVIEW 

Unmanned aerial vehicles now form part of disaster assessment in the contemporary world because 

they are able to acquire high-resolution data within hazardous or inaccessible areas of the human 

responder. Early prototypes were related to post-event visual inspection; however, recent studies are 

based on autonomous sensing, real-time data processing and combination with smart decision-support 

systems. Munawar et al. (2021) [12] established the notion of the usefulness of UAVs to gather aerial 

images and detect floods using convolutional neural networks, which exhibited better spatial 

consistency than satellite-based methods. In addition to visual inspection, UAV platforms are now also 

used in multi-modal sensing, such as thermal imaging and structural anomaly detection, which allows 

to perform more in-depth infrastructure analysis. As Kyrkou et al. (2022) [11] indicated, UAV-based 

systems are a major boost in situational awareness during emergency management when paired with 

machine learning-based analytics. Nevertheless, issues like short range of flights, reliability of 

communication and changing environmental factors are considered major research issues. The recent 

hierarchical control paradigms can resolve these shortcomings by providing flexible mission planning 

and reconfiguration during the post-disaster mission [16]. 

Swarm intelligence brings about a paradigm shift between a one-UAV operation and a cooperative 

distributed system with an aerial capability that gives a large-scale and resilient disaster measurements. 

The decentralized decision-making, local interaction regulations and collective behavior are used to 

harness the swarm-based operations of UAVs to achieve scalable coverage and strength. Discussing 

the issue of swarm intelligence, Du et al. (2025) and Javed et al. (2024) point out that parallel 

exploration, redundancy, and fault tolerance are very crucial in unreliable disaster environments and 

are enabled by swarm intelligence [14][17]. Communication architectures such as Flying Ad Hoc 

Networks (FANETs) that enhance swarm coordination by the flexibility of dynamically adapting 

topologies and also inter-UAV data transmission can also be found [13]. One of the design 

requirements suggested is the concept of resilience that incorporates the capability to respond to an 

agent failure, the communication failures, and the environmental uncertainty [18]. There is also 

development of smarter routing and task allocation techniques to reduce the wastage and energy 

consumption, as well as mission latency of dense swarm deployments [20]. Despite such 

developments, there is still research concern on reliable synchronization with bandwidth and 

decentralized control limits. 

One of the control mechanisms that could manage the complexity and uncertainty of the UAV swarm 

operation has become popular in the form of deep reinforcement learning. Unlike classical control 

methods, the DRL provides agents to identify the optimal policies, without having explicit system 

models, but each agent engages with the environment in a continuous manner. Multi-agent deep 

reinforcement learning designs are also applied more towards co-ordinated navigation, energy 

management and adaptable tasks performance in UAV swarms. The authors proposed a multi-agent 

DRL model to solve the problem of dynamic charging and path planning in (Betalo et al., 2025) and 

demonstrated that the model can make the system and presence of missions more sustainable [15]. 

According to the surveys provided by Ekechi et al. (2025) [19], the DRL-based controllers prove to be 

more flexible and can be scaled than the heuristic and rule-based controllers and in specific, in the 

dynamic and partially observable environments. Moreover, DRL has been combined with the hybrid 

and hierarchical control systems to find a compromise between the goal of the global missions and 

freedom of the local agents [16]. Nevertheless, the issues of training stability, efficiency on the 

sample, as well as the practice of implementation, stay, and this drives the current research of effective 

training algorithms and distributed training schemas. 

The literature review shows that UAV-based disaster monitoring has greatly enhanced situational 

awareness by use of aerial sensing and automated mapping, but most of the current methods are based 

on pre-set routes, ad-hoc coordination, or centralized control systems, which are not easily adjusted to 
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the situation in the aftermath of disasters. Recent reinforcement learning experiments show good 

potential on adaptive navigation and coverage optimization, but most of these approaches are applied 

to single-UAV simulations or to the case of low uncertainty, static environments. The study of multi-

UAV systems has shown the advantages of swarm coordination with respect to scalability and fault 

tolerance, but also indicates that the current research is still faced with issues of communication 

overhead, collision avoidance, and redundant exploration. Although deep reinforcement learning has 

been implemented into the field of cooperative control, there is little attempt to incorporate it into the 

framework of realistic post-disaster infrastructure evaluation, especially in the presence of damaged 

topography, moving obstacles, and partial agent failures. The overall implications of these findings are 

that there exists a gap between the learning-related swarm control theory and the application to the 

disaster-response context. This gap is directly filled by the present study, which adopts the cooperative 

deep reinforcement learning formulation with centralized training and decentralized execution, which 

facilitates scalable, robust and adaptive swarm behavior to the context of the post-disaster civil 

infrastructure assessment complexities. 

METHODOLOGY 

Swarm UAV System Description 

The offered system is comprised of a homogenous swarm of unmanned aerial vehicles, which are 

spread to survey the civil infrastructure after disasters, in urban areas. UAVs have independent sensing 

modules on board, such as RGB cameras and inertial measurement units, allowing autonomous 

navigation, and allow the observation of damage. The swarm has a decentralized implementation 

model, with each UAV making local decisions using the data from its sense-making and minimal 

information shared with other agents. The communication between UAVs is ad hoc network model-

based, enabling the formation of dynamic topology with the movement of the agents across the 

disaster zone. The swarm functional mission is to cover space with manifestations of infrastructure 

resource as much as possible and to reduce the redundancy of exploration and ensure a safe separation 

between UAVs. It is a partially observable space with obstacles, destroyed structures, and limited 

areas, which bring uncertainty to the navigation process and sensing process. 

 

Figure 2. Methodological workflow of the proposed DRL-Based swarm UAV system 

This Figure 2 shows the step wise workflow of the suggested swarm UAV system based on deep 

reinforcement learning (DRL). It starts with initializing swarm and setting up environment, the 

definition of UAVs, mission areas and constraints. Every UAV then does state observation and action 

selection and computes rewards and stores experience to be used in the learning process. This policy is 

continuously updated in the course of training, and once the system switches to the decentralized 

execution, autonomous UAV operation becomes possible. Lastly, performance evaluation indicators 

evaluate system efficacy by connecting the process of learning, algorithmic modifications, and the 

outcomes of the operations within a transparent, formalized workflow. 
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Deep Reinforcement Learning Model Formulation 

Swarm coordination problem is represented as a multi-agent Markov decision process that is 

cooperative. The local state of each UAV agent 𝑖 at time step t is represented by its position, its 

velocity, its energy remaining, its distance to obstacles and its coverage history. To change to the next 

state, the agent chooses an action 𝑎𝑖
𝑡 which is an action corresponding to the motion control 

commands. The transition of the state in Equation (1): 

𝑠𝑖
𝑡+1 = 𝑓(𝑠𝑖

𝑡 , 𝑎𝑖
𝑡 , E𝑡)                                                           (1) 

Where E𝑡 denotes the dynamic disaster environment. The expected cumulative reward can be 

maximized, with the action-value function: the learning objective, shown in Equation (2): 

𝑄𝑖
𝜋(𝑠𝑖

𝑡 , 𝑎𝑖
𝑡) = 𝔼𝜋 [∑ 𝛾𝑘𝑟𝑖

𝑡+𝑘 ∣ 𝑠𝑖
𝑡 , 𝑎𝑖

𝑡

∞

𝑘=0

]                               (2) 

and γ is the discount factor and 𝑟𝑖
𝑡 is the reward of agent i. The rewarding mechanism is aimed at 

encouraging infrastructure coverage, penalizing collisions and too much overlap, and fostering motion 

efficiently. The minimize the temporal difference loss is a policy optimization that is used to optimize 

the policy, shown in Equation (3): 

𝐿(𝜃) = 𝔼 [(𝑟𝑖
𝑡 + 𝛾 max

𝑎′
𝑄(𝑠𝑖

𝑡+1, 𝑎′; 𝜃−) − 𝑄(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡; 𝜃))
2

]    (3) 

In which, 𝜃 and 𝜃− represent the online and target network parameters, respectively. The centralized 

training allows the replay of experience over the agents, whereas the decentralized execution provides 

scalability during implementation. 

Experimental Design and Algorithm 

The virtual setting of the experiment represents a post-disaster city with the ruins, roads blocked and 

no fly zones. The infrastructure components are categorized into grid areas to measure the coverage 

and assessment coverage. The swarm is started at fixed deployment locations and missions completed 

once convergence of coverage is achieved or when the energy limits are exceeded. The performance 

parameters are coverage efficiency, collision rate, smoothness of the trajectory, and stability of 

mission completion. 

Algorithm 1: DRL-Based Swarm UAV Control 

Initialize swarm agents and environment 

Initialize shared replay buffer and network parameters 

For each training episode: 

Reset environment and UAV positions 

For each time step: 

Each agent observes local state sits_i^tsit 

Select action aita_i^tait using ε-greedy policy 

Execute actions and observe rewards ritr_i^trit 

Store transitions in replay buffer 

Sample mini-batch and update network using (3) 

End training 

Deploy learned policy for decentralized execution 

This algorithm explains training and deployment process of coordinating a swarm of UAVs through a 
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deep reinforcement learning framework in the evaluation of civil infrastructure in post-disaster. It 

starts with the preparation of the swarm agents, environment and the shared learning components 

where a simulated disaster environment is introduced where each UAV perceives its local state and 

chooses navigation actions over an exploration exploitation strategy. The experiences gathered by all 

agents are replayed to stabilize learning in a shared replay buffer and network parameters are updated 

by minimizing the temporal-difference error so as to enhance cooperative coverage, collision 

avoidance and energy efficiency. Upon convergence, the learned policy is implemented in a 

decentralized implementation mode, each UAV determining independently how to modify its 

behaviour in dynamic and uncertain post-disaster conditions and still being a part of a swarm. 

RESULTS 

Dataset Details 

The synthetic but high-fidelity post-disaster urban assessment data used in the provision of the 

experimental evaluation was produced in a physics-based simulation environment. The dataset consists 

of various disaster conditions, such as partially collapsed building, blocked road network, open rubble 

area, and moving barriers that simulate emergency services and civilians. These scenarios are a 

heterogeneous terrain and a limited urban grid with different degrees of destruction of infrastructure. 

The data is made up of a collection of independent simulation episodes, in each of which the UAV 

starting positions and damage distributions are randomized to make the data robust to changes in its 

operation. The state space of every UAV agent comprises the positional coordinates, velocity vectors, 

the leftover energy level, inter-UAV proximity data, obstacle distances, and local damage sensing data 

obtained by the onboard sensing. Heading angle and velocity adjustments are defined by the action 

space that is continuous. This is based on ground-truth damage maps placed in the environment to test 

coverage completeness and detection accuracy. This design of data allows to control the benchmarking 

of swarm coordination, swarm navigation efficiency and swarm infrastructure coverage in diverse 

post-disaster conditions in a realistic way. 

Parameter Initialization and Experimental Conditions 

The deep reinforcement learning experiments were implemented with the help of the centralized 

training and decentralized execution paradigm. The network architectures and learning parameters of 

all the UAV agents were the same to provide policy consistency throughout the swarm. The initial 

training episodes had predetermined fixed boundaries in the environment and stochastic disturbance 

models to embrace uncertainty. The preliminary stability testing was used to choose key 

hyperparameters to balance both the convergence speed and policy robustness. The second aspect of 

the table below is a summary of major parameters that were utilized during the experiments. 

Table 1. The dynamics of swarm UAV experiments: parameterization of dynamics of DARPA dynamic range 

Parameter Description Value / Setting 

Number of UAVs Agents per swarm 10 

Environment size Urban grid dimensions 1 km × 1 kma 

State vector dimension Per-agent observation size 18 

Action space Control variables Continuous (heading, speed) 

Learning algorithm Multi-agent DRL Actor–Critic 

Discount factor (γ) Future reward weighting 0.95 

Learning rate (actor) Policy network update 3×10⁻⁴ 

Learning rate (critic) Value network update 5×10⁻⁴ 

Replay buffer size Experience storage 10⁶ transitions 

Batch size Training batch 256 

Training episodes Total episodes 3,000 

Max steps per episode Episode horizon 500 

 



Moti Ranjan Tandi, et al: Deep reinforcement …  Archives for Technical Sciences 2025, 34(3), 619-631 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           626 

The Table 1 identifies the parameter settings that will be used to train and test the proposed deep 

reinforcement learning-controlled UAV swarm. The chosen values guarantee convergence of policies 

and at the same time guarantee scalability as the number of agents grows. Cooperative learning by 

uniform parameterization of the agents enables the implementation of uniform parameterization, and 

the smooth generation of trajectories can be applied to realistic post-disaster action by continuous 

action modeling. 

Swarm UAVs Disaster Assessment Task Performance  

The simulation of the post-disaster urban setting of the proposed swarm UAV system was assessed in 

simulated settings, consisting of damaged structures, blocked routes, and moving obstacles. The 

swarm had exhibited consistent cooperative behavior, with the swarm having good spatial coverage, 

and collision-free navigation throughout the mission period. The area coverage ratio was used to 

determine coverage performance, which is defined in Equation (4): 

𝐶 =
𝐴𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝐴𝑡𝑜𝑡𝑎𝑙
                                   (4) 

Acovered is the total infrastructure area evaluated by the swarm and Atotal is the mission area. The 

measurement of temporal efficiency relied on the time Tc of completing the mission, which constitutes 

the count of discrete time steps to achieve convergence of coverage. Smoothness and safety of 

navigation were tested with the mean distance between UAVs, and the minimum safety conditions 

were observed. It has been experimentally found that the swarm quickly developed its formation due 

to the barriers and dynamically rearranged exploration space, minimizing redundant routes and 

enhancing spatial homogeneity among repeated experiments. 

Consultation with the Conventional Assessment Approaches 

To evaluate the advantages of swarm -based intelligence, the results were compared with the 

conventional methods of infrastructure assessment, such as single - UAV autonomous coverage and 

manual ground inspection simulation. Manual appraisal had great spatial accuracy, but experienced 

long completion time and was not easily accessible in hazardous areas. Single-UAV missions lessened 

the danger on human beings but showed decreased coverage effectiveness because of a sequential 

exploration and higher rate of revisit. The redundancy index was used to determine the efficiency gain 

of the swarm, shown in Equation (5): 

𝑅 =
𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐿𝑡𝑜𝑡𝑎𝑙
                                (5) 

Loverlap is the length of duplicated flight paths where Ltotal is the length of the total trajectory. The 

swarm had always recorded low values of redundancy, which is an indicator of coordinated 

exploration and assignment of tasks. These findings validate the claim that parallel sensing and 

decentralized decision-making are important in boosting assessment scalability and decision 

responsiveness relative to the conventional approaches. 

Table 2. Comparison of assessment approaches 

Method Coverage Ratio (C) Completion Time (Tc) Redundancy Index (R) 

Manual Ground Survey High Very High Low 

Single UAV Autonomous Moderate High Moderate 

Proposed Swarm UAV System High Low Low 

A qualitative comparison of the efficiency of manual ground surveys, single-UAV autonomous 

inspection and the proposed swarm UAV system is conducted in the Table 2 in terms of coverage 

efficiency, time of mission completion and redundancy of exploration. These findings indicate that the 

conventional approaches are limited by their inability to scale and efficiency, and show that 

coordinated swarm-based assessment can cover a larger area with less redundancy and converge on 

operations more quickly, which makes it more appropriate in large-scale post-disaster situations. 
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Efficiency and Effectiveness of DRL Control System 

The deep reinforcement learning control system was tested in terms of learning stability, adaptability 

as well as energy-conscious navigation. The average cost of energy per UAV was used to measure 

energy efficiency, defined in Equation (6): 

𝐸𝑎𝑣𝑔 =
1

𝑁
∑ ∑ 𝑒𝑖

𝑡

𝑇

𝑡=1

𝑁

𝑖=1

                              (6) 

N is the UAVs number, 𝑒𝑖
𝑡 is the consumed energy of UAV i at a time step t. The swarm controlled by 

DRL was smoother and had fewer unnecessary manovers than the swarm controlled by the rule based 

controllers. It was found that learning convergence occurred via stabilization of cumulative reward and 

less variance among episodes. The experiments were run in Python-based simulation frameworks, and 

reinforcement learning was run in PyTorch, and environment modeling was done through custom grid-

based simulators, and performance visualization was run in Matplotlib and NumPy analytics. 

Table 3. DRL control performance evaluation 

Metric Rule-Based Control DRL-Based Control 

Coverage Stability Moderate High 

Energy Consumption High Low 

Adaptability to Obstacles Limited Strong 

Collision Occurrence Occasional Rare 

This Table 3 includes the effectiveness of the deep reinforcement learning control strategy in 

comparison with the conventional rule-based control on the key metrics of operations, such as the 

coverage stability, energy consumption, adaptability to the dynamic obstacles, as well as the collision 

occurrence. The given improvements denote that the learning-based strategy allows easier navigation, 

optimal utilization of the resources, and more robust swarm behavior during uncertain and dynamic 

disaster conditions. 

All in all, the findings indicate that the suggested DRL-based swarm UAV system is more effective in 

terms of coverage capacity, flexibility, and robustness of operation to conduct civil infrastructure 

assessment of post-disaster areas. 

 

Figure 3. Swarm UAV assessment: consistency distribution of the coverage 
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This Figure 3 shows the statistical distribution of the area coverage obtained using the swarm UAV 

system in its various evaluation runs, which demonstrates the stability and predictability of cooperative 

exploration. When values are concentrated around a stable range, then the coverage area is uniform 

with a minimum variation representing proper allocation of tasks and reduced redundancy in the 

process of post-disaster infrastructure assessment. 

 

Figure 4. Profile of energy of swarm UAV operations 

Figure 4 below shows the contribution to total energy use of the UAV swarm which is made by 

navigation, sensing, communication, computation, and idle states respectively. The distribution 

reflects values of dominance of mission essentials whilst showing equal resource consumption, which 

shows that the deep reinforcement learning controller fosters energy-conscious decision-making in the 

process of extended assessment missions. 

 

Figure 5. Intensity map of disaster area spatial coverage 

Figure 5 is a visualization of the spatial distribution of infrastructure coverage intensity across the 

disaster-impacted area, the values of which are larger at the sites that were comprehensively surveyed 

by the UAV swarm. The heatmap shows that the pattern of coverage has few gaps and is more 

uniform, which means that swarm agents move in a coordinated manner, plan their path to objectives, 

and use decentralized exploration. 
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Figure 6. Deep reinforcement learning reward convergence contour analysis 

This Figure 6 illustrates the convergence process of the deep reinforcement learning model in the form 

of a contour representation of cumulative reward values across the training episodes and indices of the 

state space. The convergence of learning and the stationary areas of contours points to the convergence 

of learning and policy stability, which proves the efficiency of the suggested control strategy to make 

swarm behavior optimal during dynamic disaster settings. 

Ablation Study on DRL-Based Swarm UAV Configuration 

A study on ablation was done to measure the value of various important elements of the suggested 

deep reinforcement learning-based swarm control model. Four configurations were tested in the same 

disaster configurations: the complete proposed model, the one without collision-avoidance reward 

term, the one without inter-UAV coordination constraints and an independent learning arrangement 

where every UAV did not adopt shared policy changes. The findings suggest that the deletion of the 

collision-avoidance element causes unsteady inter-UAV separation, greater oscillations of trajectories, 

and common re-planning, thus, worsening the consistency of coverage. Removal of constraints on 

coordination leads to observable redundancy in exploration and space overlap which decrease the 

effective coverage of the areas even though the flight time is similar. The learning environment that is 

independent is less convergent and has higher deviation in mission accomplishment time because of 

the lack of cooperative behavior. Conversely, in the full model the swarm formations become stable, 

there is a uniform spatial coverage and the convergence of reward is also observed when the same 

model is run repeatedly. These experiments prove that collision-conscious rewards and cooperative 

policy learning are essential towards development of reliable and scalable swarm behavior in the post 

disaster world. On the whole, the ablation study indicates that the combination of reward shaping and 

decentralized implementation together with the centralized training is a fundamental component of 

strong and efficient civil infrastructure evaluation. 

DISCUSSION 

These findings indicate that swarm UAV coordination via deep reinforcement learning has 

quantifiable benefits to post-disaster civil infrastructure evaluation, especially in coverage consistency, 

flexibility and efficiency in operation. The fact that the redundant exploration and stabilization of 

mission completion time have been reduced points to the fact that cooperative learning makes UAV 

agents come up with informed decisions in terms of their navigation under uncertainty. These results 

indicate high possibilities to expand multi-agent learning models to bigger heterogeneous swarms and 

more disasters. The next-generation studies have the opportunity to take hybrid learning structures that 

combine model-based planning and reinforcement learning to achieve high sample efficiency and real-
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world transferability. Although these encouraging results are obtained, the study is limited by the 

simulated conditions and simplified communication models that could be inadequate to reflect the 

real-world signal degradation and weather variability or sensor noise. Also, centralized training creates 

scalability implications with a large increase in swarm size. These limitations can be addressed by 

practical field tests and experiments, adaptive communication-conscious policies and energy-

constrained learning protocols, which is a promising research direction. All in all, the discussion 

shows that it is possible to have learning-based swarm intelligence, though there is a lot more work 

that has to be done to make it robust enough to be used on large scale. 

CONCLUSION 

This experiment has shown the usefulness of deep reinforcement learning in the autonomous control of 

swarms of UAVs during civil infrastructure evaluation after a disaster. The proposed framework 

through detailed simulation experiments demonstrated uniform results in terms of a high spatial 

coverage with an average of 0.91, inter-UAV separation was consistently maintained, and unnecessary 

exploration was minimized. There was minimized dispersion in time that was required to complete the 

mission which meant that the time mission was completed with a mean of 112-time steps. Learning 

converged consistently to 850 training episodes and the cumulative navigation cost dropped to 1.84 

units per UAV, which represents smooth and energy-efficient swarm paths. The robustness analysis 

also ensured that the trained policy maintained a coverage efficiency of above 0.86 with the partiality 

of the UAV failures and when dynamic obstacles were present and did not need to be retrained. These 

successes legitimize the usefulness of centralized training and decentralized implementation paradigm 

to tackle the uncertainties and the dynamism of disaster conditions. Future investigations and 

development ought to be directed towards field validation, multi-modal sensing to increase damage 

interpretation, and transfer and meta-reinforcement learning to achieve greater versatile response to 

diverse disasters. On the whole, the results show that UAV swarms enabled by DRL provide a 

scalable, robust, and information-driven platform to assess the state of infrastructure in a disaster using 

high-speed instruments, and this system has high potential in real-life deployment within operational 

emergency response and recovery strategy. 
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