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SUMMARY 

The stability of smart grids (SG) plays a critical role in improving the stability of power supply, 

particularly when system failures or sensor breakdowns could occur and result in a lack of input data. 

This paper provides a new method of prediction of smart grid consistency by using a Gradient Policy 

prediction model, which is based on reinforcement learning to tackle the problem of incomplete input 

features. With the help of deep neural networks, the model predicts the stability of the four-node star 

network even in the case of incomplete information. The suggested model is assessed based on the 

statistical measures of R-values and Mean Squared Error (MSE), and the findings show considerable 

improvement in the prediction of stability. Precisely, the model attained an R-value of 0.97 and an MSE 

value of 125, which is higher in predictive accuracy and stability than conventional methods. Also, an 

ablation study was done to evaluate how the absence of data affected the performance of the prediction. 

The results indicate that the model is capable of detecting and offsetting the lost input variables, which is 

why it is a valid instrument in predicting smart grid stability. The subsequent study will aim at expanding 

this approach to include other, more nonlinear variables, such as price elasticity and consumer response 

time, to improve the level of prediction. 

Key words: smart grid, reinforcement learning, stability prediction, deep neural networks, missing data 

imputation, gradient policy model, power system forecasting. 

INTRODUCTION 

There are several issues with the traditional power grid that is founded on the generation of power by 

means of fossil fuel burning, which include cybersecurity, loss of power through one-way 

communication, and privacy concerns [1]. As the cost of energy increases and the climate changes, there 

is a need to move to renewable sources of energy so as to increase the sustainability and efficiency of 

the grid. One response to this is the creation of smart grids that enable two-way communication between 

the grid devices and an optimization of the grid devices by use of sophisticated infrastructure and a 

digital sensor, amongst other things [2]. With a smart grid, consumers may produce and store energy, 
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and hence, can have a more dynamic and responsive grid than the traditional grid, where consumers are 

charged only depending on the amount of electricity usage [3]. 

The smart grid stability is vital and controlled in a decentralized manner with methods like the 

decentralized Smart Grid Control (DSGC) method, where there are four nodes in the form of a star that 

predict instability with the aid of a four-node star network with the help of a different set of differential 

equations [4]. The stability of the grid is controlled by fluctuation of the electricity prices and change in 

consumer response time, and hence is a dynamic and time-sensitive process that needs precise stability 

calculation [5][6]. Conventional approaches, such as statistical models such as the Kalman filters, 

autoregressive moving averages (ARMA), and Markov chains, have difficulties in sustaining stability 

prediction in the presence of uncertainties and other non-linear variations in power load [7]. These 

models are applicable in a limited environment, but not applicable in complex environments such as 

operations of a smart grid, where renewable energy and variable load complicate the process of 

predicting the environment [8][9]. 

It has been discovered that deep learning models, but especially neural networks, can provide a more 

stable solution to smart grid stability prediction because the model allows processing of large and 

complex datasets without preprocessing limitations [10] [13]. These models are able to deal with 

nonlinear relationships between variables and provide high accuracy in the process of training and 

testing. But the current machine learning models do not typically consider the missing data, and it can 

have a severe effect on the accuracy of predictions, particularly in cases where sensors become 

unresponsive, or data is lost due to failed sensors or lost data [12] [14] [15]. These deficiencies are 

essential since any neglect of the missing data or the incorrect approach to the given information can 

result in erroneous forecasts and grid disruption. The suggested system presented in this paper will solve 

the given challenge and utilize the deep learning methods that specifically address the issue of missing 

data to make the predictions of the stability more reliable and accurate. The model improves the stability 

and performance of the smart grid by addressing any missing data of inputs instead of either ignoring it 

or assigning it to average values [11]. To sum up, although deep learning models have great potential in 

enhancing the stability of smart grids forecasting, the management of missing data is important to 

achieve a high level of accuracy and reliability in the real world. The missing data is to be addressed 

through the proposed system, which is why it will be a more effective solution to the modern smart grids. 

Inspired by earlier research, the proposed work initiates a modern technique to forecast smart grid 

consistency using a four-node star network and a DNN by applying absolute and lost input data. The 

significant benefits of this proposed research work are listed below: 

• The smart grid consistency of a four-node star network is predicted by employing a classic FFNN 

containing the entire input dataset.  

• The lost input data caused by network interruption, sensor failures, and other system malfunctions 

is identified using the sub-neural networks. Then, the recognized missing data is used to predict 

the stability of the smart grid system.  

• Four case studies are used to analyze the accuracy and efficiency of the proposed model with at 

least one missing data point. 

The paper is organized in the following way: Section 2 presents a review of the related works and 

outlines the limitations of the traditional approaches and the promise of the machine learning methods 

in the field of predicting the stability in smart grids. Section 3 explains the methodology, which specifies 

the proposed model and mathematically formulates the four-node star network to be used in predicting 

stability. Section 4 gives the experimental results and discussion, which compares the performance of 

the proposed model based on the statistical values like R-values and Mean Squared Error (MSE). Lastly, 

Section 5 closes the paper and outlines the most important findings, as well as the recommendations for 

future research, especially the incorporation of nonlinear variables, including price elasticity and 

response times, in order to expand further on the prediction capabilities of the model. 
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RELATED WORKS 

The smart grid (SG) facilitates bidirectional electricity flow between providers and consumers, utilizing 

advanced telecommunication, data, and power technologies integrated with the existing power system 

[16]. It incorporates automation for efficient energy supply, storage, malfunction detection, and grid 

flexibility, supported by renewable energy sources (RES) and hybrid systems [17]. Key components 

include renewable resources, smart data systems, security systems, storage, sensors, and grid lines [18]. 

Smart distributed generation (SDG) enables efficient power generation near consumers, while energy 

storage systems (ESS) and renewable storage systems (RSS) help control frequency and voltage 

fluctuations, especially during emergencies [19][20]. ESS batteries enhance the production of renewable 

energy by increasing the grid reliability and efficiency [21][22]. Optimization of ESS and renewable 

production requires the synchronization of the grid. 

The smart grids utilize distributed automation to exchange information and integrate the system [23]. 

Smart metering is an automated meter reading (AMR) and advanced metering infrastructure (AMI) 

smart meter that lets the consumer monitor and control the electricity usage and costs [24][25]. Phasor 

measurement units (PMUs) and sensor networks play an important role in measuring the health of the 

grid, and PMUs are used to monitor the state of the system and provide immediate reactions [26]. The 

grid makes use of dynamic data flows and storage control by using frequency monitoring systems [27]. 

Swarm intelligence, machine learning, and game theory are used to optimize grid management and 

predict the behavior [28][29][30]. This summary highlights the smart grid's components and 

technologies, emphasizing its reliance on advanced systems for real-time monitoring, optimization, and 

efficiency improvements. 

 Other previous investigations in smart grid stability prediction have largely been based on conventional 

models such as Kalman filters, ARMA, and Markov chains that are weak in addressing dynamic settings, 

as well as the incompleteness of data. However, the approaches come in handy in constant conditions 

and do not handle variations in unpredictable modern and renewable-based smart grids. The new studies 

have turned their focus on machine learning and deep learning models that are capable of describing 

nonlinear relationships and incomplete data better. Nevertheless, the problem of the lack of input data 

that is vital to the real-life applications of smart grids is still not taken into account by the vast majority 

of existing strategies. The gap in this paper will be addressed by introducing a reinforcement learning-

based Gradient Policy prediction model, with deep neural networks, to predict the smart grid stability 

even with missing data. Our model is the first of its kind, unlike the traditional model, which ignores or 

assigns values to the missing concepts and, as such, offers a better and more dependable dynamic 

solution to the current smart grid systems. 

METHODOLOGY 

In this paper, a reinforcement learning-based method of predicting the stability of smart grids is 

suggested, even when some data are missing. The algorithm includes obtaining meaningful features out 

of the grid data and filling gaps in the input with the help of deep reinforcement learning. Fully 

Connected Neural Network (FCNN) is employed to produce a Gradient Policy model, which reduces 

prediction errors through the gradual update of weights through a gradient descent mechanism. It 

forecasts the best actions according to the state of the grid in order to achieve stability, it compares the 

stability of the grid by looking at aspects such as load and response time, and it is real-time adaptable. 

Also, the prediction of the missing data is done with the aid of the trained model, which guarantees 

further optimal functioning of the grid. 

This Figure 1 characterizes the design of a system that reinforces a learning-based method in predicting 

smart grid stability. The system comprises several elements: smart grid environment, feature extraction 

and missing data processing, FCNN Gradient Policy model, state-action prediction, system stability 

prediction, and missing data prediction. The architecture will be optimized to achieve functional 

performance of the smart grid by resolving the problems of missing data and the correct prediction of 

the system stability by applying the methods of reinforcement learning. The best policy obtained through 
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the model is the one that will make the smart grid very efficient and stable, even when there is a change 

in the input data. 

 

 

Figure 1. Smart grid stability system architecture based on reinforcement learning 

The mathematical representation of the star framework is described in section 3.1, which is constructed 

based on the equations of motion, and the grid frequency is bonded to the electricity cost. 

 

Figure 2. Smart grid 

Mathematical modelling 

Figure 2 presents the mathematical structure of the decentralized smart grid control acquired from the 

star network framework. The network structure contains three end users (i.e., user nodes) and one 

electricity generator in the middle (i.e., production node). There are two portions in the mathematical 

representation constructed with the assumption that there are no external disturbances and no 

uncertainties. The first part illustrates the load dynamics and the production unit developed using 

equations of motion. The second portion is related to the fusion of grid frequency with the power price. 

Reinforcement Learning–Based Smart Grid Stability System Architecture 

Smart Grid Sensor Data Smart Grid Consumer Smart Grid Control Center 

Smart Grid Environment 

FCNN Gradient Policy 

Model 
Feature Extraction & 

Missing Data Handling 

System Stability 
Prediction 

State 

State Action Prediction 

Optimal Policy Missing Data 
Prediction 

Reward 

Consumption 

Node 

 

 

  

Consumption 

Node 

Consumption 

Node 

Generation Node 

(Energy Source 

Star 



Mahendran, S. et al: Analyzing the stability ……  Archives for Technical Sciences 2025, 34(3), 528-542 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           532 

The energy conservation law is applied in the first phase of the mathematical modelling. According to 

this law, the power balance equation is represented as follows: 

𝑃𝑠 = 𝑃𝑎 + 𝑃𝑑 + 𝑝𝑡                                                  (1)  

In the above equation (1), 𝑃𝑠 indicates the power produced by the resource. In Eq. (1), dissipated power 

generated from the turbine is represented as 𝑃𝑑, which is directly proportional to the square of the 

angular velocity specified as: 

𝑃𝑑 = 𝐾𝑗  (𝛿𝑗(𝑡))
2

                                                  (2) 
 

In Equation (2), where, the node index (load index or generator index) is given as 𝑗, the friction 

coefficient of the 𝑗𝑡ℎ node is shown as 𝐾𝑗, and the rotor angle of the 𝑗𝑡ℎ node is 𝛿𝑗(𝑡), and it can be 

described as: 

𝛿𝑗(𝑡) =  𝜔𝑡 +  𝜃𝑗(𝑡)                                         (3)  

In Equation (3), where the frequency of the grid is 𝜔, and the relative rotor angle is represented as 𝜃𝑗. 

Likewise, in Eq. (1), 𝑃𝑎 represents the gathered kinetic energy, and 𝑃𝑡 is the transmitted power and is 

defined as: 

𝑃𝑎 =  
1

2
 𝑀𝑗

𝑑

𝑑𝑡
 (𝛿𝑗(𝑡))

2
                                    (4) 

 

Here, the 𝑗𝑡ℎ node's moment of inertia is given as 𝑀𝑗 and 𝑃𝑗𝑚
𝑚𝑎𝑥, which indicates the line's maximum 

capacity between the nodes 𝑗 and 𝑚. Applying Eq. (2), (4), and (5) in (1), 𝑃𝑗
𝑠 is derived as: 

𝑃𝑗
𝑠 =  

1

2
𝑀𝑗

𝑑

𝑑𝑡
 (𝛿𝑗(𝑡))

2
+ 𝐾𝑗 (𝛿𝑗(𝑡))

2
−  ∑ 𝑃𝑗𝑚

𝑚𝑎𝑥 sin(𝛿𝑚 − 𝛿𝑗)4
𝑚−1    (5) 

 

Then, employing 𝛿𝑗(𝑡) derived using Eq. (3) in (6), 
𝑑2

𝑑𝑡2 𝜃𝑗(𝑡) is derived as follows: 

𝑑2

𝑑𝑡2
𝜃𝑗(𝑡) = 𝑃𝑗 −  𝛼𝑗

𝑑

𝑑𝑡
𝜃𝑗(𝑡) +  ∑ 𝐾𝑗𝑚 sin(𝜃𝑚 −  𝜃𝑗)

4

𝑚−1

                (6) 

 

Where produced or consumed energy is 𝑃𝑗, the damping constant is 𝛼𝑗, and the coupling strength 

between the nodes 𝑗 and 𝑚 is given as 𝐾𝑗𝑚. These coefficients are evaluated as follows: in Equation (7) 

𝑃𝑗 =  
𝑃𝑗

𝑠−𝐾𝑗𝜔2

𝑀𝑗
, 𝛼𝑗 =  

2𝐾𝑗

𝑀𝑗
, 𝐾𝑗𝑚 =  

𝑝𝑗𝑚
𝑚𝑎𝑥

𝑀𝑗𝜔
                                      (7) 

 

The last phase in the proposed model comprises the fusion of grid frequency ω to the power price, 

encouraging end users to modify their consumption or generation. Thus, the power price 𝑝𝑗 for the 𝑗𝑡ℎ 

node is calculated. 

𝑃𝑗 =  𝑝𝜔 − 𝑐1 ∫
𝑑

𝑑𝑡
 𝜃𝑗(𝑡 − 𝜏𝑗)𝑑𝑡

𝑡

𝑡−𝑇𝑗
                                         (8)  

In equation (8), where the electricity cost is given as 𝑝𝜔 𝑎𝑡 𝑑𝜃𝑗/𝑑𝑡 =  0, the proportionality coefficient 

is represented as 𝑐1, 𝑇𝑗 is the average time, and 𝜏𝑗 represents reaction times. The electricity used or 

generated 𝑃̂𝑗(𝑝𝑗) at price 𝑝𝑗 is defined as: 
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𝑃̂𝑗(𝑝𝑗) ≈ 𝑃𝑗 + 𝑐𝑗(𝑝𝑗 − 𝑝𝜔)                                                                               (9)                    

In Equation (9) Where, 𝑐𝑗 is a coefficient directly proportional to the elasticity cost. According to the 

star network illustrated, the algebraic sum of power used or produced is assumed to be zero. Thus, the 

presumption is illustrated as: Equation (10) 

∑ 𝑃𝑗 = 04
𝑗=1                                                        (10)  

Therefore, the last dynamic equation of decentral smart grid control (DSGC) for the four-node star 

structural design network is developed by applying (7), (9), and (10) in Eq. (11) as: 

𝑑2

𝑑𝑡2
𝜃𝑗(𝑡) = 𝑃𝑗 −  𝛼𝑗

𝑑

𝑑𝑡
𝜃𝑗(𝑡) + ∑ 𝐾𝑗𝑚 sin(𝜃𝑚 −  𝜃𝑗)4

𝑚−1 − 
𝛾𝑗

𝑇𝑗
 (𝜃𝑗  (𝑡 − 𝜏𝑗) −  𝜃𝑗(𝑡 − 𝜏𝑗 − 𝑇𝑗))                (11)  

Where, 𝛾𝑗 = 𝑐1 ∗ 𝑐𝑗 . 

Stability Analysis  

During the initial phase of evaluating the dynamic stability of the network near the grid’s steady-state 

function, the network’s stable points are calculated by solving 
𝑑2

𝑑𝑡2 𝜃𝑗 = 0 and 
𝑑

𝑑𝑡
𝜃𝑗 = 0 and it can be 

given as: 

𝜃𝑗(𝑡),
𝑑

𝑑𝑡
𝜃𝑗(𝑡) = (𝜃𝑗

∗, 𝜔𝑗
∗)                                      (12)  

According to the given equation (12), sufficient coupling strength coefficient 𝐾𝑗𝑚 indicates the existence 

of fixed points in the network which broadcast electricity from the source nodes to the end users' nodes. 

Furthermore, the grid frequency of the 𝑗𝑡ℎ node 𝜔𝑗 is 
𝑑

𝑑𝑡
𝜃𝑗(𝑡) and it is assumed as zero. Therefore, 𝜔𝑗

∗ =

0 is computed as zero. The fixed points in the network always depend on the value of the relative rotor 

angle 𝜃𝑗, which is examined to predict the system's stability. In the next step, the Jacobian matrix is 

applied to identify the eigenvalues, which are used to forecast the consistency of the network. Thus, in 

Equation (13), the following calculation is used to determine the Jacobian matrix 𝐽. 

𝐽 =  (

∂

∂θj
 (

𝑑

𝑑𝑡
𝜃𝑚)

∂

∂ωj
 (

𝑑

𝑑𝑡
𝜃𝑚)

∂

∂θj
 (

𝑑

𝑑𝑡
𝜔𝑚)

∂

∂ωj
 (

𝑑

𝑑𝑡
𝜔𝑚)

)                         (13) 

 

The network stability is predicted using the eigenvalues 𝜆 derived from the given Jacobian matrix. 

Infinite numbers of solutions are present in the determined matrix. But 𝑅𝑒(𝜆)  ≥  0 (a real positive 

component) exists only in a definite number of solutions, which is used to predict the network’s stability. 

The stability is also indicated by the negative real part (𝑅𝑒(𝜆)  <  0). Therefore, the permanence of the 

network is summarized as: Equation (14)  

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  {
𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓 𝑅𝑒(𝜆) <  0

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓 𝑅𝑒(𝜆)  ≥  0
                  (14) 

 

Prediction 

This section proposes applying the online Deep Reinforcement Learning (DRL) technique to execute 

optimal design resource allocation at various aggregation levels. Fig 2 depicts the standard structure of 

our proposed method. Unlike the conventional RL model, the power consumption patterns can be 

extracted automatically using DRL, which is RL connected with DNNs of 𝑘 hidden layers. Over a given 

input distribution, the proposed technique implements the DNN as a black box form from a general 

perspective with better generalization abilities. It is provided as follows in Equation (15): 
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𝐼𝑛𝑝𝑢𝑡 (𝑑𝑎𝑡𝑎) → 𝐷𝑁𝑁(𝑘) → 𝑂𝑢𝑡𝑝𝑢𝑡 (𝑑𝑎𝑡𝑎 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛)  (15)  

 

 

 

Figure 3. RL learning model 

As the Figure 3 shows, the reinforcement learning model will involve the interaction between the State 

and the environment as the Agent takes on certain actions that cause the state to change. The agent is 

operated according to the Policy but modified by the Learning Algorithm considering the rewards that 

the environment would provide. The agent can also advance a better decision-making process with this 

continuous loop. 

Two DRL models are introduced in the next section of this research, namely Deep Policy Gradient 

(DPG) and Deep Q-learning (DQN). 

𝐷𝑅𝐿 =  {
𝐼𝑛𝑝𝑢𝑡 (𝑑𝑎𝑡𝑎) → 𝐷𝑁𝑁(𝑘) → 𝑂𝑢𝑡𝑝𝑢𝑡 (𝑠, 𝑎) 𝑄 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔

𝑛𝑝𝑢𝑡 (𝑑𝑎𝑡𝑎) → 𝐷𝑁𝑁(𝑘) → 𝑂𝑢𝑡𝑝𝑢𝑡 𝑝(𝑠, 𝑎) 𝑃𝑜𝑙𝑖𝑐𝑦
 

(16) 

In Equation (16) comparison, the policy-based technique can explicitly parameterize the policy 

𝜋(𝑎|𝑠;  𝜃) and revise the parameters 𝜃 by calculating estimated gradient ascent on the predictable long-

term reward than the value-based techniques like deep Q-learning.  

Deep Q-learning (DQN)  

To update the parameters, Q-learning variant is used to train the deep neural network with stochastic 

gradient descent. Initially, deep Q-network with parameters 𝜃 replaces the value function in the general 

RL model provided by the biases and weights of DNN as 𝑄(𝑠, 𝑎, 𝜃)  ≈  𝑄𝜋 (𝑠, 𝑎). The objective function 

by MSE in 𝑄 −values is defined using the above approximation technique. 

Q-learning gradient 

The data applied to the standard 𝑄 −learning are sequential, and this causes oscillation in the results of 

the neural network. To avoid the issue of instability distribution and correlated data, the proposed 

technique applies a familiar replay methodology which arbitrarily samples earlier transitions mini-batch 

(𝑠𝑡 , 𝑟𝑡 , 𝑎𝑡 , 𝑠𝑡+1) from the gathered dataset 𝐷. This process helps to smooth the function of training 

distribution over a lot of traditional data. 

𝐿(𝜃) = 𝐸[(𝑟 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1, 𝜃) − 𝑄(𝑠𝑡 , 𝑎𝑡 , 𝜃)2]  (17) 
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∂(𝜃)

∂θ
= 𝐸[(𝑟 + 𝛾] max

𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1, 𝜃) − 𝑄(𝑠𝑡 , 𝑎𝑡 , 𝜃))
∂Q(st, 𝑎𝑡 , 𝜃)

∂θ
 

(18) 

The Deep RL method is incorporated directly in Eq, (17) (18). Then, 𝑚𝑎𝑥𝑎𝑡 + 1 𝑄(𝑠𝑡 + 1, 𝑎𝑡 + 1, 𝜃) 

is augmented by the binary action vector at ∈ A P. As a result, m d=1 at 𝑃 −  𝑑, 𝑡  can be controlled 

optimally. This research aims to encapsulate the time window in the reward function 𝑟𝑡(𝜆𝑡
+, 𝜆𝑡

−, 𝑃𝑖,𝑑
− ) 

rather than implementing the limitation on the time window needed by a particular device 𝑑 and the 

consumer satisfaction is considered. 

Deep Policy Gradient (DPG)  

It was revealed that the convergence time is reduced by policy gradient techniques in continuous games. 

Instead of computing 𝑄(𝑠𝑡 , 𝑎, 𝜃), ∀𝑎 ∈  𝐴 as in deep Q-learning, neurons in the last output layer make 

use of deep policy gradient with θ parameters from a structural point of view, which can calculate the 

prospect to take action in a particular state 𝑠𝑡 which can be shown as 𝑝(𝑎|𝑠𝑡 , 𝜃), ∀𝑎 ∈  𝐴. The outcome 

of the above function can depict the advantage of using deep policy gradient instead of deep Q-learning. 

DPG can execute multiple functions concurrently in the game, utilizing the available probability for all 

actions. In the context of policy gradient, the estimated optimization issue was explained in Eq. (19), 

which is comparable to maximizing the sum predictable for the parameterized model using the policy π, 

and it can be described as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑥~𝑝(𝑥|𝜃) [𝑅|𝜋]                                                                (19)  

In the context of deep policy gradient, the deep neural network contains the parameterized model, 

making it a probability density function with its inputs, i.e. 𝑓(𝑥), resulting in Eq. (20) for the subsequent 

optimization issue. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑥~𝑝(𝑥|𝜃) [𝑓(𝑥)]                                                               (20)  

The 𝑓(𝑥) is used as a score function yield by the unbiased gradient estimation as presented in Eq. (21): 

∇𝜃 𝐸𝑥[𝑓(𝑥)] =  ∇𝜃  ∫ 𝑑𝑥 𝑝(𝑥|𝜃)𝑓(𝑥) =  ∫ 𝑑𝑥 ∇𝜃 𝑝(𝑥|𝜃)𝑓(𝑥)        (21)  

Where,  the output data for the first-order partial derivative is depicted as 𝜕/𝜕𝜃=∇𝜃, naturally, the 

gradient description of Eq. (21) is given by considering the samples of 𝑥𝑖  ∼  𝑝(𝑥|𝜃) and the 

approximate gradient is calculated, such that 𝑔ˆ𝑖
𝜃  =  𝑓(𝑥𝑖) ∇𝜃 𝑙𝑜𝑔 𝑝(𝑥𝑖 |𝜃). The log probability of a 

specific sample xi is increased when moving in the direction of 𝑔𝑖, which is proportional to the reward 

connected with 𝑓(𝑥𝑖). This practically shows a good sample. The samples 𝜏 =
 (𝑠0, 𝑎0, 𝑟0, . . . , 𝑠𝑇 −1, 𝑎𝑇 −1, 𝑟𝑇 −1) are gathered in a trajectory and the reward is provided at the closing 

stages of the game in policy gradient. It is required to compute the density 𝑝(𝜏 |𝜃) concerning 𝜃 and 

differentiate the result to find the trajectory gradient as follows in Equation (22): 

𝑝(𝜏|𝜃) = 𝑝(𝑠0) =  ∏ (𝜋(𝑎𝑡|𝑠𝑡 , 𝜃)𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑇−1
𝑡=0 )                               (22)  

Here, log probability is taken for Eq. (23), and as a result, 

log 𝑝(𝜏|𝜃) = log 𝑝(𝑠0) + ∑[log 𝜋(𝑎𝑡|𝑠𝑡 , 𝜃) + log 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)]

𝑇−1

𝑡=0

)     (23) 

 

Computing the derivative of Eq. (24) concerning 𝜃 directs to: 

𝜕

𝜕𝜃
log 𝑝(𝜏|𝜃) =

𝜕 

𝜕𝜃
∑ log 𝜋(𝑎𝑡|𝑠𝑡, 𝜃)𝑇−1

𝑡=0                                                          (24)  
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At last, experts can formulate the gradient update gˆ θ τ for parameters θ after using a trajectory τ as: 

Equation (25) 

𝑔𝜏
𝜃  ∝ 𝑅𝑇

𝜕

𝜕𝜃
∑ log 𝜋(𝑎𝑡|𝑠𝑡, 𝜃)𝑇−1

𝑡=0                                                                       (25)  

Algorithm: Smart Grid Stability Prediction Using Reinforcement Learning 

1. Input: 

• Smart grid data: 𝐷 = {𝑋𝑡, 𝑌𝑡}, where 𝑋𝑡represents the grid features at time step 𝑡, and 𝑌𝑡represents 

the corresponding stability values. 

• Missing data indicator: 𝑀𝑡, where 𝑀𝑡 = 1if data is missing at time step 𝑡, and 𝑀𝑡 = 0otherwise. 

2. Initialization: 

• Initialize the neural network with random weights 𝑊0and biases 𝑏0. 

• Set learning rate 𝜂, number of episodes 𝐸, and discount factor 𝛾. 

3. For each episode 𝒆 = 𝟏to 𝑬: 

0. For each time step 𝒕 = 𝟏to 𝑻: 

▪ If 𝑀𝑡 = 1(missing data): 

▪ Predict missing values 𝑋𝑡
𝑝𝑟𝑒𝑑

using the model based on previous observations. 

▪ Extract current grid state features 𝑋𝑡. 

▪ Compute the action 𝐴𝑡using the Gradient Policy model: 

▪ 𝐴𝑡 = arg max 𝐴  𝑄(𝑋𝑡 , 𝐴𝑡; 𝜃), where 𝑄is the state-action value function. 

▪ Apply the predicted action 𝐴𝑡to update the grid's state. 

▪ Observe the next state 𝑋𝑡+1and reward 𝑅𝑡, which corresponds to the stability prediction error. 

▪ Update the model’s weights using the policy gradient algorithm: 

▪ 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + 𝜂 ⋅ ∇𝜃𝐽(𝜃), where 𝐽(𝜃)is the objective function. 

4. Output: 

• The learned model parameters 𝜃∗that minimize the stability prediction error. 

5. Post-Training: 

• Test the model on new data to evaluate its performance. 

• Use the trained model to predict the stability of the smart grid, even with missing data. 

The algorithm is a mix of reinforced learning and deep neural networks that is capable of managing 

missing data to determine the stability of smart grids in real-time. The model is continuously enhanced 

with its prediction capacity continuously as it exists in the smart grid environment, offering a solid 

solution to the contemporary energy systems. 

In Table 1 Deep Q-learning and deep policy gradient are trained based on the offline repository dataset. 

The environment is built using the fixed base loads and several possibilities of the unspecified loads are 

taken into account. The rewards are awarded depending on whether the calculated results are similar to 

the optimization target. The model is able to learn correct choices as the training advances. The offline 

data is further optimized, which provides a more suitable approach in the real-life application. The main 
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benefit of such a method is that once the model is trained on offline data, it is also dynamically adapted 

to changes in an online setting, which enhances the accuracy and performance. 

NUMERICAL RESULTS AND ANALYSIS 

Table 1. Software, tools, and dataset details used in the smart grid stability prediction model 

Software/Tool Details 

Programming 

Language 

Python 3.8 

Deep Learning 

Framework 

TensorFlow 2.4 

GPU NVIDIA RTX 3090 

Operating System Ubuntu 20.04 LTS 

IDE/Editor Visual Studio Code 1.60 

Dataset Pecan Street Smart Grid Test Bed, which includes real-time data on power consumption, 

generation, and response times from various consumers. 

Data Preprocessing Missing data handling using deep reinforcement learning models for missing feature 

prediction. 

Other Libraries NumPy, pandas, matplotlib (for data analysis and visualization), scikit-learn (for 

evaluation metrics) 

Dataset details: The training and testing data has been obtained in the Pecan Street Smart Grid Test Bed, 

which uploads real-time data on the power consumption, generation, and consumer response time. It has 

more than 10,000 data points and covers such critical aspects of electricity demand, rate of generation, 

changes in loads, consumer behaviors, and response time. This data is employed to simulate different 

conditions of the smart grid such as data loss to determine how the model performs in predicting the 

stability of the grid.  

Parameter Initialization 

The parameters applied in the experiments include: **Learning rate (η) = 0.001, ** Number of Episodes 

(E ) =1000 and a Discount Factor (γ) =0.99. The Batch Size was 64 and the FCNN architecture (with 3 

hidden layers) comprised of 128, 64, 32 neurons with ReLU activation and linear output. Adam 

optimizer was used, and the model was trained during 50 epochs. These environments were selected in 

order to have accuracy and training efficiency. 

Scalability evaluation 

Three case studies that comprised of different number of consumers (10, 20 and 48 buildings) of the 

Pecan Street SG test bed were used to test the efficiency of proposed model. The results were analyzed 

using deep Q-learning and deep policy gradient. The model showed scalable gains such as minimization 

of peaks and minimization of costs with high gains in performance where most consumers were 

concerned with the cost minimization. These findings are shown in Tables 2, 3 and 4. 

Table 2. Peak minimization comparison 

 

Metrics 

 

Methods 

No. of grids 

10 20 30 

Mean SD Mean SD Mean SD 

- 60 1 125 10 282 15 

Peak value [kW] DQN 50 5.7 107 8 239 13 

Optimized peak [kW] DPG 42 5 94 8 214 13 
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Table 3. Cost reduction estimation 

 

Metrics 

 

Methods 

No. of grids 

10 20 30 

Mean SD Mean SD Mean SD 

- 60 1 125 10 282 15 

Peak value [kW] DQN 50 5.7 107 8 239 13 

Optimized peak [kW] DPG 42 5 94 8 214 13 

Cost [$/day] - 57 21 119 31 230 39 

Min. cost 

[$/day] 

DQN 48 18 94 25 199 33 

DPG 45 16 83 22 168 29 

Table 4. Comparison with related works 

Techniques RMSE MAPE NRMSE R-Value 

RNN 461.3 37.312 0.625 0.569 

ARIMA 327.6 32.18 0.48 0.712 

RNN-LSTM 235.56 29.12 0.21 0.895 

Bi-LSTM 128.8004 22.4460 0.1074 0.9442 

RL 125 19.5 0.09 0.97 
 

 

Figure 4. Cost analysis 

 

Figure 5. RMSE and MAPE comparison 
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Similarly, at the grid level, a deep policy gradient is predicted to be more stable and to gain better 

performance than deep Q-learning. The peak reduction rate of 27% and cost minimization of 27% was 

achieved by deep policy gradient, while deep Q-learning can reduce the peak by 10% and reduce the 

cost by 15%, which is comparatively much lesser performance than DPG. To visualize the performance 

of the deep policy gradient, the optimized and un-optimized annualized power expenses for buildings 

are depicted in Figure 4. From the experiment, learned that all buildings behave differently. In a few 

cases, deep policy gradients can reduce the annual cost by half. In other cases, it facilitates by reducing 

the price by some percentage level.  

 

Figure 6. NRMSE and R-value comparison 

Convergence capabilities 

The convergence is evaluated after the execution of several iterations over episodes. For instance, figure 

3 depicts the learning capability of DPG techniques for peak reduction and relative reward function for 

a structure. Twenty arbitrarily selected days are taken to predict the average value for each episode. At 

the time of observation, it is clear that the reward function increases rapidly, but after 1000 episodes, it 

increases gradually. As a result, after one thousand episodes, convergence is achieved using DPG 

between the optimized average peak value and standard peak value. The error rate comparison is shown 

in Figure 5 and Figure 6. 

Computational time requirements 

The longed state spaces are handled by both variants of DRL, facilitating improved accuracy and 

performance. Unlike the present optimization methods, like particle swarm optimization, deep RL 

knows how to identify optimal control action. Using this prediction, it can make decisions within a 

limited period (in milliseconds). In contrast, some optimization approach needs the expensive 

optimization technique to run repeatedly to make every decision. 

Metrics Formulae 

In order to determine performance of the suggested model to predict smart grid stability the measures 

applied are the following:  

R-value (Correlation Coefficient): 

R -value represents the magnitude and direction of the linear association between the forecasted and the 

real values of stability. It is calculated as:  
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𝑅 =
𝑛∑(𝑋𝑖𝑌𝑖)−∑𝑋𝑖∑𝑌𝑖

√[𝑛∑𝑋𝑖
2−(∑𝑋𝑖)2][𝑛∑𝑌𝑖

2−(∑𝑌𝑖)2]

                     (26) 

In Equation (26) Where:𝑋𝑖are the predicted values, 𝑌𝑖are the actual values, 𝑛is the number of data points. 

An increased R-value (near to 1) is a better predictor. 

Mean Squared Error (MSE): 

MSE is used to measure the squared differences between the predicted value and the actual value with 

the smaller the MSE the higher the accuracy. It is calculated as:  

MSE =
1

𝑛
∑ (

𝑛

𝑖=1
𝑋𝑖 − 𝑌𝑖)2                    (27) 

In Equation (27) Where:𝑋𝑖are the predicted values, 𝑌𝑖are the actual values, 𝑛is the number of data points. 

Precision, Recall, and F1-Score (for classification models): 

Such metrics are applied in the evaluation of the classification performance of the model especially when 

it is binary in nature or when it is a multi-class prediction. Precision: The amount of accuracy of true 

predictions.  

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                    (28) 

Recall: Measures the ability of the model to identify all the relevant cases. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                          (29) 

F1- Score: The harmonic average of Precision and Recall, which give a balance between Precision and 

Recall. 

F1-Score = 2 ×
Precision×Recall

Precision+Recall
                      (30) 

In Equation (28)(29) Where: 𝑇𝑃= True Positive,𝐹𝑃= False Positive, 𝐹𝑁= False Negative. These 

measures give a holistic analysis of how well of a model is functioning to predict the stability of the 

smart grid system taking into consideration the quality of the predictions, as well as the capability of the 

model to manage the uncertainties in the data. 

In Equation (30) Where: Precision is the proportion between actual positives and the number of predicted 

positive. Recall represents the proportion of true positives to the all actual positives. F1-Score (0 to 1) = 

1 which means that it has performed optimally. This measure is especially effective in cases of unequal 

data, because it uses both false positives and false negatives, which are a more comprehensive analysis 

of the model work.  

A comparison between the two prediction methods was done in terms of the effect of missing data 

management on the performance of prediction. Variations of the model were also put into test, the 

complete model was compared with the model without the missing data prediction. The findings 

revealed that the stability and accuracy of the model were hugely enhanced by the treatment of missing 

data as indicated by the R-value and MSE of the complete model of 0.97 and 125 respectively. It means 

that the missing data management increases the predictive capability of the model in practice. 

CONCLUSION 

A new reinforcement learning-based model to predict smart grid stability, especially when missing data 

is present, is introduced in this paper. The suggested model which employs the deep neural networks to 
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predict missing data and forecast the stability has shown a great improvement compared to the 

conventional methods. The most important statistics measures such as the variable, R-value and mean 

squared error (MSE) were taken to determine the model performance and the result was a R-value of 

0.97 and a mean squared error of 125, which belongs to the high predictive power and stability of a 

model. These findings underscore the fact that the model could manage missing input data, which, in 

turn, guaranteed a further optimal functioning of the smart grid. The ablation experiment also revealed 

that missing data handling should be included in the prediction procedure. Through comparison of the 

full model with the models that did not predict missing data, the full model was found to be far much 

better to the rest, and the importance of data completeness in making accurate predictions is therefore 

important in this study. The importance of these results is in the fact that the model can be dynamically 

adjusted to the real conditions of the smart grid where the loss of data because of sensor failures or 

network disruption is frequent. The flexibility enables the model to be employed in real-time application 

to enhance resilience and stability of the current smart grids. Further research on the model will be done 

to expand its use of nonlinear input variables, including price elasticity and consumer response times, 

so as to further develop its predictive features and application to more complex grid systems.  
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