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SUMMARY

To solve the problems of traditional Apriori algorithm in power marketing big data processing, such as
candidate item set redundancy, low single-machine computing efficiency, and difficulty in adapting to
multi-dimensional time series data, this study proposes an improved Apriori algorithm that integrates
Resilient Distributed Dataset (RDD) distributed architecture. This study takes two public data sets as the
research object. It first uses RDD distributed architecture to complete data cleaning, missing value filling,
outlier elimination and feature conversion. Then, it optimizes the pruning strategy and parallel support
statistical method to address the shortcomings of insufficient pruning and redundant support calculation
of traditional algorithms. The experimental results show that when the improved algorithm processes 1
million pieces of electricity marketing data, the running time is reduced from 486.5s to 183.4s compared
to native Apriori. When processing 5 million pieces of real electricity marketing data, the speedup ratio
of the improved algorithm reaches 3.75 at five nodes, and the expansion rate remains at 79%. A total of
12 core association rules for power marketing were discovered. Among them, typical rules such as
"industrial users — high load from 9:00 to 18:00 on weekdays" and "high temperature >35°C+residential
users — surge in air conditioning load" have an average support degree of 0.71, an average confidence
level of 0.83, and an improvement degree greater than 1.2. The research conclusion confirms that the
integration solution of the improved algorithm and RDD model can efficiently process power marketing
big data, and the mined association rules have actual business value. This research provides data support
and technical reference for power companies to formulate peak-shifting electricity price policies,
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optimize regional power supply planning, and provide precise marketing services. This is of great
significance in promoting the transformation of electric power marketing to intelligence and refinement.

Key words: improved apriori algorithm, RDD model, power marketing big data, association rule

mining, distributed processing.
INTRODUCTION

With the comprehensive advancement of smart grid construction and the widespread deployment of
advanced measurement systems, the data scale of the power industry has grown exponentially, officially
entering the era of big data. Power marketing is the core business link for power grid enterprises to
connect users, and has accumulated massive user files, real-time metering data, payment records and
customer service interaction data [1]. This type of data is characterized by high dimensionality,
sparseness, heterogeneity, and strong real-time nature, and contains a variety of high-value information.
When power companies formulate electricity price policies or optimize regional power supply planning,
they need to efficiently mine implicit association rules from these massive data [2] [3]. Among many
data mining algorithms, association rule mining is a more classic method. The Apriori algorithm is
widely used in shopping basket analysis, medical diagnosis, network intrusion detection and other fields
because of its ease of implementation and parallelization [4] [5] [6]. Shen K et al. proposed a correlation
mining model coupling K-means clustering and the improved Apriori algorithm to address the difficulty
in predicting air pollution caused by the interweaving of multiple factors in the urban environment. The
results showed that the proportion of secondary industry and saturated vapor pressure were key variables
that restrict air quality, and the superimposed effect of multiple factors far exceeded the impact of a
single factor [7]. Proposed a model that coupled the improved Apriori algorithm and social network
analysis to solve the difficulty in accurately identifying sequence patterns of household electricity
consumption behavior in smart home environments [23]. The results showed that this solution could
successfully extract time series correlations between household appliances and generate unique activity
chains that reflect differences in household behaviors [8][24].

In summary, the Apriori algorithm is widely used in association pattern recognition and potential pattern
exploration in various fields [22]. However, when faced with TB-level or even PB-level electric power
marketing big data, the traditional Apriori algorithm needs to scan the entire transaction database
multiple times in the process of generating frequent item sets, resulting in huge I/O overhead. Secondly,
when dealing with dense data sets or low support threshold tasks, this algorithm will generate massive
candidate sets, which not only takes up a lot of memory resources, but also causes heavy subset testing
computational burden [20]. In addition, the existing stand-alone computing model is limited by hardware
resources, is difficult to cope with the explosive growth of power data, and is prone to memory overflow
or calculation timeout problems [9] [10]. In recent years, Spark, a distributed computing framework
based on memory computing, has gradually become mainstream. Its core is the Resilient Distributed
Dataset (RDD), which provides an efficient fault-tolerant mechanism and memory computing
capabilities, and provides new opportunities for optimizing iterative mining algorithms [11] [12].
Therefore, the study proposes an improved Apriori algorithm that integrates RDD distributed
architecture, namely the RDD-Apriori algorithm, to achieve efficient power marketing big data
processing and correlation analysis. The main innovation of the research is to solve the low quality of
original power data. A parallel cleaning process based on RDD is designed, the Lagrangian interpolation
method is introduced to repair missing time series data, and K-Means clustering is combined to
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adaptively discretize continuous attributes, laying a high-quality data foundation for mining tasks [18].
The study uses the memory computing characteristics of RDD and proposes a bitmap-based support
counting strategy, which converts complex transaction scans into efficient bit logic operations and
completely eliminates redundant I/O. In addition, the study introduces transaction compression and hash
tree filtering mechanisms, optimizes the pruning strategy, and effectively solves the candidate item set
explosion [21].

The main contributions of the paper are:

e The implementation of a new Apriori algorithm that has been enhanced with the Resilient
Distributed Dataset (RDD) distributed architecture that can be used to scale power marketing
big data effectively.

e Tuned pruning strategy and parallel support statistical algorithms to overcome such problems
with traditional Apriori as redundancy of candidate item set and low computational efficiency.

¢ The finding of 12 principal association regulations in power marketing that offers practical data
to electricity value-based policies, planning of provincial power provision and power promoting
approaches.

Literature review introduces the problems of large-scale power marketing data processing with the
conventional Apriori algorithms including high level of I/O overhead, redundancy of candidate item-
sets, and inefficiency. It highlights the rising significance of the distributed computing systems, such as
the RDD model of Spark, in overcoming these constraints. The algorithmic improvements in data mining
have been studied in the past, yet there is no effective algorithm that can integrate parallel processing
and Apriori algorithm to tackle the high dimensionality, low density, and real time characteristics of
power marketing data. This review preconditions the proposed RDD-Apriori algorithm that will
combine these improvements and enhance the performance of the data mining and provide the business
with potential actions.

The paper is organized as follows: The Introduction provides the statements about the difficulties in
processing the large-scale data on marketing power marketing by using the conventional algorithms and
the proposal of the RDD-Apriori solution. The section of Methods and Materials presents the data
preprocessing and the design of the enhanced Apriori algorithm by means of using Spark and its RDD
model. The Results section juxtaposes the performance of RDD- Apriori algorithm against the traditional
methods and reflects its efficiency in the running time, memory consumption and scalability. Lastly, the
Discussion and Conclusion analyze the performance of the algorithm and explains the business interest
of the mined rules as well as recommends future research using the algorithm to enhance the real-time
processing of data.

METHODS AND MATERIALS
Electric power marketing big data preprocessing and data set construction

Electric power marketing data comes from a wide range of sources, including operating data from data
collection and monitoring systems, measurement data from advanced measurement systems, customer
files from marketing business systems, and external meteorological data. Directly used for mining will
cause difficulty in algorithm convergence or distorted results [13]. Therefore, building an efficient
preprocessing process based on RDD is the cornerstone of subsequent correlation analysis. The full flow

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 1381



Fan Pan, et al: Big data processing ... ... Archives for Technical Sciences 2025, 34(3), 1379-1397

chart of electric power marketing big data preprocessing based on Spark RDD is shown in Figure 1.
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Figure 1. Data preprocessing pipeline for raw data integration and cleaning

In Figure 1, under the Spark distributed computing framework, the data cleaning process mainly ensures
the fault tolerance of data processing through the immutability and lineage mechanism of RDD. First,
for duplicate data, the distinct () operator of RDD is used to perform deduplication operations. In the
power system, due to the communication retransmission mechanism, there are a large number of
duplicate metering records, and deduplication can effectively reduce the computing load. Secondly, for
outliers, the study uses the 30 principle based on statistics for parallel identification. For continuous
numerical variables X such as electricity and load, their mean y and standard deviation o in the time
series are calculated at one time through the stats () method of RDD [14]. The outlier discrimination is
defined in equation (1).

|x; —ul > 30 (D
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In equation (1), x; is the data of the i -th sampling point. In a distributed environment, a filter
transformation operation is designed to eliminate extreme values beyond the range. For non-normally
distributed marketing data, the Inter Quartile Range (IQR) method is used for auxiliary determination.
The value range of the outlier X ;i 1S sShown in equation (2).

Xouttier € (—, Q1 — 1.5(Q3 — Q1)) U (@3 + 1.5(Q3 — Q1), +) (2)

In equation (2), Q; and Q3 represent the first quartile and third quartile of the data distribution,
respectively. Data loss in power data is often caused by terminal failure or channel congestion. The
traditional deletion method will cause information loss and destroy the integrity of the time series. The

study designs two parallel filling strategies based on the RDD model. For attributes with a low missing

rate (<5%), the reduceByKey operator is used to aggregate by region or user type, and the average
attribute value of similar users is calculated for filling. For missing continuous time series, interpolation

is performed using data from the previous and later time windows. Assuming that n data points
(xi, ¥:)

are known, the Lagrangian interpolation polynomial X is shown in equation (3).
n

Lp(x) = Zf:o yj () 3)

In equation (3), y; represents the actual power value recorded at time point . [;(x) represents the

Lagrangian basis function, as shown in equation (4). X
j

X=X
Li(x) = H?:O,iijm 4)

The schematic diagram of Lagrangian interpolation method for repairing power time series data is shown
in Figure 2.

From Figure 2, in Spark RDD partitions, the research mainly uses the map Partitions operator to perform
sliding window operations on the time series data in each partition. This process selects known
observation points before and after the missing moment, and substitutes them into the Lagrangian
polynomial equation for calculation. Finally, the generated repair value is back-filled to the missing
position of the original sequence to achieve efficient local interpolation. The Apriori algorithm processes
nominal data, and power data contains a large number of continuous values, so data must be discretized.
The study adopts the K-Means clustering discretization method, using the K-Means algorithm in the
Spark ML library to divide the continuous attributes into o clusters, each cluster representing a discrete
interval. Compared with equal-width or equal-frequency binning, clustering discretization can better
preserve the distribution characteristics of the data. After discretization is completed, the transaction
database needs to be converted into a form suitable for association rule mining. Traditional Apriori uses
horizontal data format. To adapt to the improved algorithm, the research converts it into a Boolean matrix
or vertical data format. The item set is S = {s;, Sy, ..., S, } and the transaction set is T = {t;, t,,...,tp}.
A Boolean matrix M of a X b is constructed, as shown in equation (5).
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Figure 2. Principle diagram of Lagrange interpolation method for repairing power time series data

In RDD, this conversion is implemented through flat Map and zip with Index, which converts the
original wide table into an inverted index structure of (ItemID, List[TransactionID]), speeding up
subsequent support calculations.

Improved Apriori algorithm design based on RDD

The traditional Apriori algorithm needs to scan the database multiple times when processing massive
power marketing data, resulting in huge 1/0 overhead [15]. This method will generate a massive set of
candidate items and occupy a lot of memory. To address these problems, the RDD-Apriori algorithm is
proposed. The core of this algorithm is to make full use of the memory computing characteristics of
Spark RDD, and achieve efficient association rule mining in a distributed environment by optimizing
pruning strategies and designing efficient parallel support statistical methods. This algorithm follows
Spark's Map-Reduce parallel programming paradigm and decouples the global mining task into two
stages: local frequent itemset mining and global frequent itemset aggregation. The physical execution
process relies on the partitioning mechanism of RDD. The specific process is shown in Figure 3.
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Figure 3. Distributed computing flowchart of RDD apriori algorithm

In Figure 3, sc. text File is first used to load preprocessed data, and the data is evenly dispersed to each
Worker node through the repartition operator to avoid data skew. In the Map stage, each partition runs
the improved mining logic independently to generate local candidate frequent item sets. In the Reduce
stage, the reduceByKey operator is used to summarize the candidate set counts across nodes and select
frequent item sets that meet the global minimum support. To solve the excessive, I/O overhead caused
by the traditional algorithm's need to scan the database multiple times, the study optimizes the parallel
support statistical method to propose a bitmap-based calculation strategy. This method utilizes the
Boolean matrix generated in the preprocessing stage to convert complex transaction scans into efficient
bit operations. For two candidate item sets A and B, the transaction bitmaps stored in RDD are V, and
Vg, respectively. The support of the itemset A U B can be quickly obtained through bitwise AND
operation (AND) without traversing the original data. The expression is shown in equation (6).

Support(A U B) = BitCount(V; AVg)  (6)

In the memory storage structure of Spark RDD, the bitmap of the itemset is cached directly as Value.
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This method directly obtains the support of the current itemset by performing logical AND operations
on the preorder itemset bitmap, thereby reducing I/O overhead and completely eliminating redundant
calculations. To solve the too large candidate item sets generated by traditional algorithms, the pruning
strategy is optimized, and transaction compression and hash tree filtering mechanisms are introduced.
According to the monotonicity principle of the Apriori algorithm, subsets of frequent item sets must also
be frequent [16]. During the iterative mining process, if the total number of items contained in a
transaction record is less than the length of the current mining target itemset, the transaction does not
contain any valid frequent item sets. Based on this logic, the study introduces a transaction compression
strategy and uses a distributed filtering operator to eliminate invalid transaction records with insufficient
length before each iteration. As the mining depth increases, this strategy can exponentially reduce the
size of the data set to be processed. In addition, when the candidate set is generated in the connection
step, the research further combines the hash tree structure for parallel filtering to improve the accuracy
of candidate set generation. The parallel execution logic flow chart integrating bitmap optimization and
transaction compression is shown in Figure 4.

In Figure 4, the algorithm adopts a dual-channel parallel processing mechanism in the input stage. The
left channel uses the previous round of frequent item sets combined with the hash tree optimization
strategy to perform connection operations and parallel filtering to generate candidate sets. The right path
applies a transaction compression strategy to the original transaction RDD, and uses distributed filtering
operators to eliminate invalid transactions with insufficient length to achieve exponential reduction in
data size. Subsequently, the processed candidate set and compressed data environment are gathered in
the bitmap optimization module. Bit logic AND operations are used to replace traditional database
scanning to complete support statistics and minimum support screening. Finally, the frequent item sets
of this round are output and fed back to the next iteration.

i >[ Previous round frequent item sets } { Transaction RDD }

E v v

: Strategy 1: Hash Tree Optimization Strategy 2: Transaction Compression

E Connection operation Check Length

; Hash Tree Filtering . Distributed Filter Operator .

E Candidate set ¢ Compressed Data

Strategy 3: Bitmap Optimization

! Bitwise and Operation

i Support Counting
E Next Iteration v
Fommmmme e [ Frequent items in this round ]

Figure 4. Parallel execution logic flowchart integrating bitmap optimization and transaction compression

After obtaining all frequent item sets through the above improvement strategy, the process enters the
rule generation stage. To eliminate possible false strong correlations in power marketing scenarios, this
study introduces the improvement degree Lif as an evaluation index in addition to the traditional support
degree Support and confidence degree Confidence. Figure 5 shows the conversion logic and operator
calling sequence of the algorithm at the RDD level.
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Figure 5. RDD level transformation logic and operator call sequence

In Figure 5, the evaluation index calculation system of rule A = B is shown in equation (7).

Support(A = B) =P(AUB) = CounltT('le)
i _ __ Support(AUB)
Confidence(A = B) = P(B|A) = ~Support(d) (7)
, __ P(B|A) _ Confidence(A=>B)
Llft(A = B) - P(B) - Support(B)

In equation (7), |D| is the total number of transactions. Where, there is a positive correlation between A
and B that has actual value. In Spark implementation, the flatMap operator is used to decompose frequent
itemsets into rule antecedents and consequents. The above indicators are calculated in parallel. Finally,
strong association rules that meet the threshold are output.

Algorithm: RDD-Apriori - Improved Apriori Algorithm for Power Marketing Big Data
Input:

e  D: Input dataset with Ninstances (x;’ y;)

e  B: Batch size for inference (parameter for memory control)

e  0: Pruning threshold for feature selection

e  y: Minimum support threshold for frequent itemset mining
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e S: Sample size for distributed SHAP explanation
Output:
e  ¥: Predicted power consumption patterns (association rules)

e  @®: SHAP explanations for the selected samples

Steps:
1. Preprocessing: Clean the input data, removing duplicates and outliers.
2. Feature Selection: Identify the feature subset Fwhere variance Var(x;) > 6and mutual

information MI(x;,y) > y.

3. Data Transformation: Use K-Means clustering for discretizing continuous features to adapt
them for Apriori.

4. RDD Architecture: Process the data in a distributed environment using Spark's RDD model for
memory-efficient computation.

5. Algorithm Training: Fit the Apriori model to the preprocessed and discretized data using the
Spark framework.

6. Batch-Wise Inference: For i = Oto Nwith batch size B:
o Load Xpaieh = Dregucedlit i + B]
o Perform parallel support counting and pruning to reduce I/O overhead.

7. Selective SHAP Explanation:

o Select a random stratified sample Dgyapfrom Deqyced

o Initialize SHAP explainer on the trained model

o Compute ® = explainer.SHAP_values(Dgyap)

8. Return: Output yand Pas predicted rules and their explanations.

RDD-Apriori algorithm is an improved algorithm of the original Apriori algorithm, which can efficiently
handle great amount of power marketing big data and utilize Spark through Resilient Distributed Dataset
(RDD) architecture. It maximizes the data preprocessing, feature selection and frequent itemset mining
through parallel processing. Some of the important innovations are the implementation of the support
counting by use of Bitmap in order to reduce the I/O overhead, compression of transactions in order to
accommodate the use of massive sets of candidates and an efficient pruning algorithm to reduce the use
of memory. The algorithm is effective in the extraction of quality association rule that is useful in power
marketing, including consumption and pricing behavior.
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Experimental environment and evaluation indicators

After completing the distributed architecture design of the algorithm, the operating efficiency and rule
mining quality in a large-scale power data environment are evaluated. To objectively verify the
performance of the RDD-Apriori algorithm in power marketing big data processing, a high-performance
computing cluster based on Hadoop/Spark is built and a comparative experiment is designed. The
experimental environment consists of one Master node and four Slave nodes. All nodes are
interconnected through Gigabit switches to build a LAN computing cluster. The operating system is
Ubuntu Server 20.04 LTS, the underlying file system is Hadoop HDFS 2.7.2, and the computing engine
is Spark 2.4.0. The JDK version is 1.8 and the Scala version is 2.11. The specific configuration is shown
in Table 1.

Table 1. Experimental environment configuration

Configuration item Master node (1 unit) Slave nodes (4 units)
CPU Intel Xeon Silver 4208 @ 2.10GHz Intel Core 17-10700 @ 2.90GHz
(8 cores and 16 threads) (8 cores and 8 threads)
Memory (RAM) 32GB DDR4 2666MHz 16GB DDR4 2666MHz
Hard Disk 512GB NVMe SSD+2TB HDD 1TB SATA HDD
Network (Network) Gigabit Ethernet card (1Gbps Ethernet)
Operating system Ubuntu Server 20.04 LTS
Bottom level system Hadoop HDFS 2.7.2
computing engine Spark 2.4.0
development environment JDK 1.8.0 201/ Scala 2.11.8
Database/Tools MySQL 5.7 / Hive 2.3.4

To verify the effectiveness of the RDD-Apriori algorithm when processing data of different sizes and
types, two data sets are selected for the experiment and the right to use them has been obtained. The
benchmark test uses the "Individual Household Electric Power Consumption" public data set
(https://archive.ics.uci.edu/dataset/23 5/individual+household+electrictpower+consumption) provided
by the UCI machine learning library. This data set contains more than 2 million household electricity
consumption sampling records, and the study extracts 1 million pieces of data for experiments. The real
power marketing business data set is derived from the desensitized business data of the marketing
management system of a provincial power company. This data set covers 2023 to 2025, with a total
number of records of approximately 5 million, and the original storage size is approximately 2.5GB.
After preprocessing steps such as data cleaning, discretization and Boolean matrix conversion, the data
are reconstructed into a 67-dimensional feature space to fully simulate the association rule mining
scenario in the power marketing big data environment. The research mainly constructs an evaluation
system from two dimensions: algorithm performance and mining quality, as shown in Figure 6.

In Figure 6, in terms of performance evaluation, the study first examines the running time, that is, the
entire process time from task submission to result output, including data reading, data transmission in
the Shuffle stage, and calculation time. Then, the peak memory usage is tested, and the JVM heap
memory usage of each Worker node is monitored during the peak period of algorithm running,
quantitatively verifying the optimization effect of the algorithm on memory space. The Shuffle write
volume is then used to measure the data transmission overhead between nodes in the distributed
computing process, reflecting the communication cost of the algorithm. Next, the speedup ratio is used
to measure the speed improvement of the parallel algorithm compared to the single-machine
environment, as shown in equation (8).
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Figure 6. Algorithm evaluation system

In equation (8), T; represents the running time of a single node. T), represents the running time of
nodes. This indicator directly reflects the performance gain brought by cluster expansion. In additimﬁ
the study introduces the expansion rate to evaluate the performance maintenance capability of the system
when the amount of data increases in proportion to the number of computing nodes. The specific
expression is shown in equation (9).

Scaleup = T(q,1y/Tnm) ©)

In equation (9), T(1,1) represents the processing time on a single node for 1 time the amount of data.
T(m,m) represents the processing time of m times the amount of data on m nodes. To verify the
commercial value of the mined power marketing rules, the study uses support and confidence to measure
the universality and prediction accuracy of the rules. The lift is used to measure the promoting effect of
the rule's antecedent on the consequent. The rule is judged to be effective only when Lift>1.

RESULTS
Analysis Of Algorithm Performance Verification Results

To verify the effectiveness of the RDD-Apriori algorithm, the performance of different algorithms in a
public data set was compared. The data set has 1 million pieces of data. The comparison algorithms
include Traditional Apriori, Spark FP-Growth and "Yet Another Frequent Itemset Mining" (YAFIM).
The evaluation indicators used include running time and peak Java Virtual Machine (JVM) heap memory
usage. To ensure the accuracy of the results, a total of 20 tests were conducted, and the results are shown
in Figure 7. From Figure 7(a), Traditional Apriori was limited by the single-machine computing
bottleneck, had the highest time consumption and obvious fluctuations, with an average of 486.5s. Spark
FP-Growth took advantage of distributed computing to significantly reduce the time consumption to

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 1390



Fan Pan, et al: Big data processing ... ... Archives for Technical Sciences 2025, 34(3), 1379-1397

248.2s, and the YAFIM algorithm was further optimized to 215.6s. The RDD-Apriori algorithm had the
lowest average time consumption, only 183.4s. From Figure 7(b), in terms of peak memory usage, RDD-
Apriori benefited from bitmap compression and transaction matrix optimization technology, and the
peak memory was 1755.2MB, saving 38.6% of memory space compared to the Spark benchmark. It
shows that the RDD-Apriori algorithm has great advantages in running time and memory.

-------- Traditional Apriori —-— Spark FP-Growth 3
—— YAFIM — RDD-Apriori 577
500 . =
P s al 42500
5400 2
£ E3r 28005
L (]
PO o 2,1
Epoo 7 ~"s= -2l
é ~ — — —— ~ ~ ~ 1 ) . HH |
100 L L L L ' Traditional Spark FP- RDD-
0 4 8 12 16 20 Apriori  Growth YAFIM Apriori
Number of tests Algorithms
(a) The running time of different algorithms (b) Peak memory of different algorithms

Figure 7. The running time and peak memory of different algorithms

The study then verified the scalability of the RDD-Apriori algorithm when the data size grew linearly,
and compared the running time and Shuffle write volume under different data volumes. Traditional
Apriori is a stand-alone algorithm and does not have the Shuffle process in distributed computing. The
specific test results are shown in Figure 8. From Figure 8(a), as the data size increased from 200,000 to
1 million, the running time of the four algorithms showed an upward trend. Traditional Apriori was
limited by single-machine I/O and computing bottlenecks, and its time-consuming curve was the
steepest, increasing from 85.2s to 486.5s, indicating that it does not have the scalability to handle
massive data. However, RDD-Apriori always maintains the lowest time level and has the gentlest growth
curve, only increasing from 51.2s to 183.4s. From Figure 8(b), the Shuffle write volume generated by
Spark FP-Growth increased sharply with the data size, reaching a peak of 820.1MB when there were 1
million pieces of data, which puts a heavy burden on the cluster network. Although the YAFIM algorithm
reduces the transmission volume to 550.3MB through optimization, its performance is still not as good
as RDD-Apriori, and its shuffle volume is only 395.2MB. The proposed algorithm has high operating
efficiency under data sets of different sizes.

The research continues to verify the parallel computing efficiency of each algorithm in a distributed
cluster environment. By gradually increasing the number of Worker nodes, the speedup ratio of each
algorithm is examined. To highlight the advantages of multiple nodes, the experiment selected a real
power marketing business data set with a data size of 5 million. The comparison results of the running
time and speedup ratio of different algorithms under different numbers of nodes are shown in Figure 9.
From Figure 9(a), Spark FP-Growth had the highest time consumption due to the large construction and
maintenance overhead of the tree structure, from 4120.5s for a single node to 1320.6s for five nodes.
YAFIM performed in the middle. The time consumption of the RDD-Apriori algorithm was significantly
reduced from 3240.6s to 865.3s, indicating that increasing computing resources can most efficiently
translate into time gains for the algorithm. From Figure 9(b), the speedup ratio curve of Spark FP-Growth
grew slowly and only reached 3.12 when there were five nodes. As the number of nodes increases,
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frequent data communication between nodes offsets part of the dividends of parallel computing. In
contrast, the speedup ratio curve of RDD-Apriori is closest to the ideal line, reaching 3.75 at five nodes,
which is better than that of the Spark benchmark and YAFIM algorithm. RDD-Apriori greatly reduces
network communication bottlenecks through bitmap compression technology, allowing it to have
stronger parallel acceleration capabilities when the cluster expands.

~0-- Traditional Apriori -0~ Spark FP-Growth —0- Spark FP-Growth —— RDD-Apriori

—~ YAFIM —— RDD-Apriori —~ YAFIM
500 - ° 1000
e E '
2400 o = 800 e
N ) e
= g s
5 300 2 600 | Pal
” ¥ = P A
S - . > e A -
- 0]

§200 N o /,/El'/////i = 400 _/E e ~
& :E:/'/iﬁ/// i —_ A*///"/

wp g R S S

& - = % @ —
T B A ey e
0 6 8 <10° 0 10°
Data scale Data scale
(2) Running time under different data scales (b) Shuffle output under different data volumes

Figure 8. Running time and Shuffle output under different data volumes

The study further examines whether the system can maintain stable processing efficiency when the data
size and computing resources increase in proportion. The experiment is conducted based on a real power
marketing data set. The experiment kept the amount of data processed by a single node constant at 1
million pieces, with one node processing 1 million pieces of data and two nodes processing 2 million
pieces of data. The study gradually reduces the global minimum support and forces the algorithm to
mine sparser and massive candidate sets to verify the robustness of the algorithm. The expansion rate of
each algorithm and the running time under different minimum support degrees are shown in Figure 10.
From Figure 10(a), as the amount of data increased, the expansion rates of the three distributed
algorithms all showed a downward trend, which is in line with the general law that communication
overhead in distributed systems increases with the scale of the cluster. The Spark FP-Growth algorithm
had the largest decline, with an expansion rate of only 55% when five nodes have 5 million pieces of
data. The expansion rate of the RDD-Apriori algorithm was 79%. From Figure 10(b), the Traditional
Apriori algorithm cannot complete the calculation due to memory overflow or timeout after the support
is lower than 0.4%. The running time of Spark FP-Growth reached 1094.7s under low support (0.1%).
The running time of the RDD-Apriori algorithm when the minimum support was 0.1% was significantly
lower than that of the other algorithms, only 480.2s. The RDD-Apriori algorithm has excellent
scalability and strong robustness when dealing with complex mining tasks of massive sparse data.
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Figure 9. Running time and speedup ratio under different numbers of nodes
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Figure 10. The expansion rate of various algorithms and the running time under different minimum support levels

Electric power marketing correlation analysis results

The study uses 5 million real power marketing business data sets to mine association rules based on the
RDD-Apriori algorithm. By adjusting the threshold combination of minimum support and minimum
confidence, the study observes the changing relationship between the quantity and quality of generated
rules, and then determines the optimal parameter configuration. The test results are shown in Table 2.
As the threshold increases, the number of generated rules decreases sharply and the average
improvement degree increases steadily. Experimental groups A and B had rule redundancy and weak
correlation due to too low thresholds, while groups D and E had key patterns missing due to excessive
strictness. In contrast, experimental group C (support 0.4/confidence 0.6) achieved the best balance
between mining quantity and quality, effectively filtering noise while retaining 12 strong association
rules, with an average improvement of 1.26. Therefore, the study selects group C as the optimal
parameter configuration.
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Table 2. Comparison of association rule mining results under different threshold combinations

Number of
. .. - Total number
Experimental | Minimum Minimum strong Average
of generated Y .
group number Support Confidence rules (pieces) association lift
P rules (Lift>1)
A 0.3 0.5 185 92 1.06
B 0.3 0.7 74 45 1.13
C 0.4 0.6 28 12 1.26
D 0.5 0.8 4 4 1.32
E 0.6 0.85 0 0 /
Table 3. Detailed indicators of core association rules for power marketing
Rule Business
D Antecedent Rule Rule consequent | Support | Confidence | Lift Consistency
Verification
. High load from
Ry | Industrial User (Industry 9:00-18:00 on 0.75 089 | 135| Consistent
Code 02)
weekdays
Maximum temperature>35° Air conditioning .
R2 C+residential users load surge (all day) 0.68 0.85 1.42 Consistent
Commercial users (large Continuous peak
R3 supermarkets) & during holidays 0.72 0.82 1.28 Consistent
|P from 10:00-22:00
R4 Resident qsers+ccc)>1d wave Heatmg equipment 0.66 0.78 131 Consistent
warning (<0°C) load increases
High energy consuming
enterprisest+peak valley Load transfer at .
RS electricity price night (0:00-8:00) 0.74 0.81 122 Consistent
implementation
o Working days
R6 Office building users 12:00-14:00, low |  0.76 0.88 133 |  Consistent
(business office) .
load period
. Y Electricity peak
Ry | Agriculturalimrigationand g0 'o.00%06:00 | 0.65 079 |125| Consistent
drainage userstrainfall<Smm . )
in the morning
Daily peak hours
L from 18:00 to .
RS Catering industry users 21-00 in the 0.71 0.83 1.3 Consistent
evening
Hotel accommodation Hioh load operation
R9 industry+summer vacation & P 0.7 0.84 1.29 Consistent
throughout the day
(July August)
Electric vehicle chargin 18: 00-22:00
R10 ectric vehicie charging Charging load 0.69 0.86 1.4 Consistent
station .
concentration
Educational institutions
(primary and secondary Overall load .
R11 schools)+winter and summer rate<20% 0.73 0.8 1.26 Consistent
vacations
Weekend load does
RI2 Industrial users+peak order not de?crease 0.75 0.87 136 Consistent
season (Q4) (continuous
production)
Mean / 0.71 0.83 1.31 Consistent

Based on the optimal parameter configuration determined in the previous experiment, the algorithm
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effectively filtered out low-value redundant rules and selected 12 core association rules with an
improvement greater than 1.2. The detailed quantitative indicators and business consistency verification
results of these rules are shown in Table 3. The RDD-Apriori algorithm performed better in mining high-
quality business logic. From the statistical indicators, the average support of the 12 core rules reached
0.71, and the average confidence was 0.83, indicating that the mined electricity consumption pattern has
extremely high universality and prediction accuracy in massive data. The average improvement degree
of the rules was 1.31, and all rules exceed the threshold of 1.2, confirming that there is a significant
positive correlation between the antecedent and the consequent of the rule. Specifically, R1 reveals the
rigid load characteristics exhibited by industrial users during workdays, with an improvement of 1.35.
R2 quantifies the strong driving effect of high temperature weather (>35°C) on residents’ air
conditioning load, with an improvement degree of 1.42. The RDD-Apriori algorithm can provide a
reliable data basis for power companies to formulate differentiated marketing strategies and load
dispatch.

The ablation experiment determines the influence of various elements of the RDD-Apriori algorithm by
also removing or modifying single features and evaluating the effect of each on performance. It has been
shown that optimizations, including support counting by the use of bitmaps, transaction compression,
and pruning strategy are among the factors that enable computational overhead to be significantly
decreased and memory efficiency is enhanced. Using comparison between the full algorithm and the
versions that do not contain certain optimizations, it is proved that each of the components has its impact
on overall efficiency with the most significant changes being observed with regards to running time and
scalability in case of multiple optimizations.

DISCUSSION AND CONCLUSION

To solve the problem that traditional association rule algorithms are inefficient and difficult to adapt to
large-scale distributed environments when processing massive and heterogeneous electric power
marketing data, the RDD-Apriori algorithm was proposed. The research fully optimized the algorithm
by introducing parallel preprocessing process, bitmap support counting and transaction compression
mechanism under the Spark computing framework. Experimental data showed that when processing 1
million public data sets, the running time of the RDD-Apriori algorithm was only 183.4s, which was
approximately 62.3% shorter than the 486.5s of the traditional stand-alone Apriori algorithm, and the
peak memory usage was only 1755.2MB, which was 38.6% lower than that of the Spark benchmark. In
a scalability test on 5 million pieces of real power marketing business data, the algorithm achieved a
speedup ratio of 3.75 on five nodes. Under extremely sparse tasks with the support threshold reduced to
0.1%, it could still complete the calculation in a stable time of 480.2s [19]. The research uses bitmap
compression to convert the originally heavy full table scan into efficient logical bit operations, which
greatly reduces I/O overhead. The transaction compression strategy effectively curbs the exponential
explosion of candidate item sets by dynamically eliminating invalid transactions with insufficient length
during iterations [17]. In addition, the 12 core association rules mined have extremely high business
consistency, with an average improvement of 1.31, confirming that the mining results have significant
positive business correlation value and are not statistical deviations.

The integration solution of RDD distributed architecture and optimized Apriori algorithm can efficiently
extract high-value information from massive power data, providing a scientific basis for power
companies to formulate precise marketing, peak and valley dispatch and electricity price policies.
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However, the current discretization process still relies on the preset K-Means clustering number, and the

dynamic response capability to real-time streaming data needs to be improved. Future research will

explore the automatic optimization clustering algorithm to enhance adaptability, and try to combine

Spark Streaming technology to expand the mining model to near-real-time load analysis scenarios to

further promote the transformation of power marketing to intelligence.
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