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SUMMARY 

To solve the problems of traditional Apriori algorithm in power marketing big data processing, such as 

candidate item set redundancy, low single-machine computing efficiency, and difficulty in adapting to 

multi-dimensional time series data, this study proposes an improved Apriori algorithm that integrates 

Resilient Distributed Dataset (RDD) distributed architecture. This study takes two public data sets as the 

research object. It first uses RDD distributed architecture to complete data cleaning, missing value filling, 

outlier elimination and feature conversion. Then, it optimizes the pruning strategy and parallel support 

statistical method to address the shortcomings of insufficient pruning and redundant support calculation 

of traditional algorithms. The experimental results show that when the improved algorithm processes 1 

million pieces of electricity marketing data, the running time is reduced from 486.5s to 183.4s compared 

to native Apriori. When processing 5 million pieces of real electricity marketing data, the speedup ratio 

of the improved algorithm reaches 3.75 at five nodes, and the expansion rate remains at 79%. A total of 

12 core association rules for power marketing were discovered. Among them, typical rules such as 

"industrial users → high load from 9:00 to 18:00 on weekdays" and "high temperature >35°C+residential 

users → surge in air conditioning load" have an average support degree of 0.71, an average confidence 

level of 0.83, and an improvement degree greater than 1.2. The research conclusion confirms that the 

integration solution of the improved algorithm and RDD model can efficiently process power marketing 

big data, and the mined association rules have actual business value. This research provides data support 

and technical reference for power companies to formulate peak-shifting electricity price policies, 
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optimize regional power supply planning, and provide precise marketing services. This is of great 

significance in promoting the transformation of electric power marketing to intelligence and refinement. 

Key words: improved apriori algorithm, RDD model, power marketing big data, association rule 

mining, distributed processing. 

INTRODUCTION 

With the comprehensive advancement of smart grid construction and the widespread deployment of 

advanced measurement systems, the data scale of the power industry has grown exponentially, officially 

entering the era of big data. Power marketing is the core business link for power grid enterprises to 

connect users, and has accumulated massive user files, real-time metering data, payment records and 

customer service interaction data [1]. This type of data is characterized by high dimensionality, 

sparseness, heterogeneity, and strong real-time nature, and contains a variety of high-value information. 

When power companies formulate electricity price policies or optimize regional power supply planning, 

they need to efficiently mine implicit association rules from these massive data [2] [3]. Among many 

data mining algorithms, association rule mining is a more classic method. The Apriori algorithm is 

widely used in shopping basket analysis, medical diagnosis, network intrusion detection and other fields 

because of its ease of implementation and parallelization [4] [5] [6]. Shen K et al. proposed a correlation 

mining model coupling K-means clustering and the improved Apriori algorithm to address the difficulty 

in predicting air pollution caused by the interweaving of multiple factors in the urban environment. The 

results showed that the proportion of secondary industry and saturated vapor pressure were key variables 

that restrict air quality, and the superimposed effect of multiple factors far exceeded the impact of a 

single factor [7]. Proposed a model that coupled the improved Apriori algorithm and social network 

analysis to solve the difficulty in accurately identifying sequence patterns of household electricity 

consumption behavior in smart home environments [23]. The results showed that this solution could 

successfully extract time series correlations between household appliances and generate unique activity 

chains that reflect differences in household behaviors [8][24]. 

In summary, the Apriori algorithm is widely used in association pattern recognition and potential pattern 

exploration in various fields [22]. However, when faced with TB-level or even PB-level electric power 

marketing big data, the traditional Apriori algorithm needs to scan the entire transaction database 

multiple times in the process of generating frequent item sets, resulting in huge I/O overhead. Secondly, 

when dealing with dense data sets or low support threshold tasks, this algorithm will generate massive 

candidate sets, which not only takes up a lot of memory resources, but also causes heavy subset testing 

computational burden [20]. In addition, the existing stand-alone computing model is limited by hardware 

resources, is difficult to cope with the explosive growth of power data, and is prone to memory overflow 

or calculation timeout problems [9] [10]. In recent years, Spark, a distributed computing framework 

based on memory computing, has gradually become mainstream. Its core is the Resilient Distributed 

Dataset (RDD), which provides an efficient fault-tolerant mechanism and memory computing 

capabilities, and provides new opportunities for optimizing iterative mining algorithms [11] [12]. 

Therefore, the study proposes an improved Apriori algorithm that integrates RDD distributed 

architecture, namely the RDD-Apriori algorithm, to achieve efficient power marketing big data 

processing and correlation analysis. The main innovation of the research is to solve the low quality of 

original power data. A parallel cleaning process based on RDD is designed, the Lagrangian interpolation 

method is introduced to repair missing time series data, and K-Means clustering is combined to 
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adaptively discretize continuous attributes, laying a high-quality data foundation for mining tasks [18]. 

The study uses the memory computing characteristics of RDD and proposes a bitmap-based support 

counting strategy, which converts complex transaction scans into efficient bit logic operations and 

completely eliminates redundant I/O. In addition, the study introduces transaction compression and hash 

tree filtering mechanisms, optimizes the pruning strategy, and effectively solves the candidate item set 

explosion [21]. 

The main contributions of the paper are: 

• The implementation of a new Apriori algorithm that has been enhanced with the Resilient 

Distributed Dataset (RDD) distributed architecture that can be used to scale power marketing 

big data effectively. 

• Tuned pruning strategy and parallel support statistical algorithms to overcome such problems 

with traditional Apriori as redundancy of candidate item set and low computational efficiency. 

• The finding of 12 principal association regulations in power marketing that offers practical data 

to electricity value-based policies, planning of provincial power provision and power promoting 

approaches. 

Literature review introduces the problems of large-scale power marketing data processing with the 

conventional Apriori algorithms including high level of I/O overhead, redundancy of candidate item-

sets, and inefficiency. It highlights the rising significance of the distributed computing systems, such as 

the RDD model of Spark, in overcoming these constraints. The algorithmic improvements in data mining 

have been studied in the past, yet there is no effective algorithm that can integrate parallel processing 

and Apriori algorithm to tackle the high dimensionality, low density, and real time characteristics of 

power marketing data. This review preconditions the proposed RDD-Apriori algorithm that will 

combine these improvements and enhance the performance of the data mining and provide the business 

with potential actions. 

The paper is organized as follows: The Introduction provides the statements about the difficulties in 

processing the large-scale data on marketing power marketing by using the conventional algorithms and 

the proposal of the RDD-Apriori solution. The section of Methods and Materials presents the data 

preprocessing and the design of the enhanced Apriori algorithm by means of using Spark and its RDD 

model. The Results section juxtaposes the performance of RDD- Apriori algorithm against the traditional 

methods and reflects its efficiency in the running time, memory consumption and scalability. Lastly, the 

Discussion and Conclusion analyze the performance of the algorithm and explains the business interest 

of the mined rules as well as recommends future research using the algorithm to enhance the real-time 

processing of data. 

METHODS AND MATERIALS 

Electric power marketing big data preprocessing and data set construction 

Electric power marketing data comes from a wide range of sources, including operating data from data 

collection and monitoring systems, measurement data from advanced measurement systems, customer 

files from marketing business systems, and external meteorological data. Directly used for mining will 

cause difficulty in algorithm convergence or distorted results [13]. Therefore, building an efficient 

preprocessing process based on RDD is the cornerstone of subsequent correlation analysis. The full flow 
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chart of electric power marketing big data preprocessing based on Spark RDD is shown in Figure 1. 

 

Figure 1. Data preprocessing pipeline for raw data integration and cleaning 

In Figure 1, under the Spark distributed computing framework, the data cleaning process mainly ensures 

the fault tolerance of data processing through the immutability and lineage mechanism of RDD. First, 

for duplicate data, the distinct () operator of RDD is used to perform deduplication operations. In the 

power system, due to the communication retransmission mechanism, there are a large number of 

duplicate metering records, and deduplication can effectively reduce the computing load. Secondly, for 

outliers, the study uses the 3𝜎 principle based on statistics for parallel identification. For continuous 

numerical variables 𝑋 such as electricity and load, their mean 𝜇 and standard deviation 𝜎 in the time 

series are calculated at one time through the stats () method of RDD [14]. The outlier discrimination is 

defined in equation (1). 

|𝑥𝑖 − 𝜇| > 3𝜎                                                                                     (1) 
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In equation (1), 𝑥𝑖 is the data of the 𝑖 -th sampling point. In a distributed environment, a filter 

transformation operation is designed to eliminate extreme values beyond the range. For non-normally 

distributed marketing data, the Inter Quartile Range (IQR) method is used for auxiliary determination. 

The value range of the outlier 𝑥𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is shown in equation (2). 

𝑥𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∈ (−∞,𝑄1 − 1.5(𝑄3 − 𝑄1)) ∪ (𝑄3 + 1.5(𝑄3 − 𝑄1),+∞)   (2) 

In equation (2), 𝑄1 and 𝑄3 represent the first quartile and third quartile of the data distribution, 

respectively. Data loss in power data is often caused by terminal failure or channel congestion. The 

traditional deletion method will cause information loss and destroy the integrity of the time series. The 

study designs two parallel filling strategies based on the RDD model. For 
attributes with a low missing 

rate (<5%), the reduceByKey operator is used to aggregate by region or user type, and the average 

attribute value of similar users is calculated for filling. For missing continuous time series, interpolation 

is performed using data from the previous and later time windows. Assuming that 𝑛 data points 
(𝑥𝑖, 𝑦𝑖)

 

are known, the Lagrangian interpolation polynomial 
𝐿𝑛(

𝑥)
 is shown in equation (3).

 

𝐿𝑛(𝑥) = ∑ 𝑦𝑗
𝑘
𝑗=0 𝑙𝑗(𝑥)                                                                             (3) 

In equation (3), 𝑦𝑗 represents the actual power value recorded at time point 

𝑥𝑗

. 𝑙𝑗(𝑥) represents the 

Lagrangian basis function, as shown in equation (4). 

𝑙𝑗(𝑥) = ∏
𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖

𝑘
𝑖=0,𝑖≠𝑗                                                                               (4) 

The schematic diagram of Lagrangian interpolation method for repairing power time series data is shown 

in Figure 2. 

From Figure 2, in Spark RDD partitions, the research mainly uses the map Partitions operator to perform 

sliding window operations on the time series data in each partition. This process selects known 

observation points before and after the missing moment, and substitutes them into the Lagrangian 

polynomial equation for calculation. Finally, the generated repair value is back-filled to the missing 

position of the original sequence to achieve efficient local interpolation. The Apriori algorithm processes 

nominal data, and power data contains a large number of continuous values, so data must be discretized. 

The study adopts the K-Means clustering discretization method, using the K-Means algorithm in the 

Spark ML library to divide the continuous attributes into 
𝑜

 clusters, each cluster representing a discrete 

interval. Compared with equal-width or equal-frequency binning, clustering discretization can better 

preserve the distribution characteristics of the data. After discretization is completed, the transaction 

database needs to be converted into a form suitable for association rule mining. Traditional Apriori uses 

horizontal data format. To adapt to the improved algorithm, the research converts it into a Boolean matrix 

or vertical data format. The item set is 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑎} and the transaction set is 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑏}. 

A Boolean matrix 𝑀 of 𝑎 × 𝑏 is constructed, as shown in equation (5). 
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𝑀𝑝𝑞 = {
1, if item 𝑠𝑞 ∈ transaction 𝑡𝑝
0, otherwise

                                (5) 

 

Figure 2. Principle diagram of Lagrange interpolation method for repairing power time series data 

In RDD, this conversion is implemented through flat Map and zip with Index, which converts the 

original wide table into an inverted index structure of (ItemID, List[TransactionID]), speeding up 

subsequent support calculations. 

Improved Apriori algorithm design based on RDD 

The traditional Apriori algorithm needs to scan the database multiple times when processing massive 

power marketing data, resulting in huge I/O overhead [15]. This method will generate a massive set of 

candidate items and occupy a lot of memory. To address these problems, the RDD-Apriori algorithm is 

proposed. The core of this algorithm is to make full use of the memory computing characteristics of 

Spark RDD, and achieve efficient association rule mining in a distributed environment by optimizing 

pruning strategies and designing efficient parallel support statistical methods. This algorithm follows 

Spark's Map-Reduce parallel programming paradigm and decouples the global mining task into two 

stages: local frequent itemset mining and global frequent itemset aggregation. The physical execution 

process relies on the partitioning mechanism of RDD. The specific process is shown in Figure 3. 
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Figure 3. Distributed computing flowchart of RDD apriori algorithm 

In Figure 3, sc. text File is first used to load preprocessed data, and the data is evenly dispersed to each 

Worker node through the repartition operator to avoid data skew. In the Map stage, each partition runs 

the improved mining logic independently to generate local candidate frequent item sets. In the Reduce 

stage, the reduceByKey operator is used to summarize the candidate set counts across nodes and select 

frequent item sets that meet the global minimum support. To solve the excessive, I/O overhead caused 

by the traditional algorithm's need to scan the database multiple times, the study optimizes the parallel 

support statistical method to propose a bitmap-based calculation strategy. This method utilizes the 

Boolean matrix generated in the preprocessing stage to convert complex transaction scans into efficient 

bit operations. For two candidate item sets 𝐴 and 𝐵, the transaction bitmaps stored in RDD are 𝑉𝐴 and 

𝑉𝐵, respectively. The support of the itemset 𝐴 ∪ 𝐵 can be quickly obtained through bitwise AND 

operation (AND) without traversing the original data. The expression is shown in equation (6). 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∪ 𝐵) = BitCount(𝑉𝐴 ∧ 𝑉𝐵)      (6) 

In the memory storage structure of Spark RDD, the bitmap of the itemset is cached directly as Value. 
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This method directly obtains the support of the current itemset by performing logical AND operations 

on the preorder itemset bitmap, thereby reducing I/O overhead and completely eliminating redundant 

calculations. To solve the too large candidate item sets generated by traditional algorithms, the pruning 

strategy is optimized, and transaction compression and hash tree filtering mechanisms are introduced. 

According to the monotonicity principle of the Apriori algorithm, subsets of frequent item sets must also 

be frequent [16]. During the iterative mining process, if the total number of items contained in a 

transaction record is less than the length of the current mining target itemset, the transaction does not 

contain any valid frequent item sets. Based on this logic, the study introduces a transaction compression 

strategy and uses a distributed filtering operator to eliminate invalid transaction records with insufficient 

length before each iteration. As the mining depth increases, this strategy can exponentially reduce the 

size of the data set to be processed. In addition, when the candidate set is generated in the connection 

step, the research further combines the hash tree structure for parallel filtering to improve the accuracy 

of candidate set generation. The parallel execution logic flow chart integrating bitmap optimization and 

transaction compression is shown in Figure 4. 

In Figure 4, the algorithm adopts a dual-channel parallel processing mechanism in the input stage. The 

left channel uses the previous round of frequent item sets combined with the hash tree optimization 

strategy to perform connection operations and parallel filtering to generate candidate sets. The right path 

applies a transaction compression strategy to the original transaction RDD, and uses distributed filtering 

operators to eliminate invalid transactions with insufficient length to achieve exponential reduction in 

data size. Subsequently, the processed candidate set and compressed data environment are gathered in 

the bitmap optimization module. Bit logic AND operations are used to replace traditional database 

scanning to complete support statistics and minimum support screening. Finally, the frequent item sets 

of this round are output and fed back to the next iteration.  

 

Figure 4. Parallel execution logic flowchart integrating bitmap optimization and transaction compression 

After obtaining all frequent item sets through the above improvement strategy, the process enters the 

rule generation stage. To eliminate possible false strong correlations in power marketing scenarios, this 

study introduces the improvement degree 𝐿𝑖𝑓 as an evaluation index in addition to the traditional support 

degree 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 and confidence degree 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. Figure 5 shows the conversion logic and operator 

calling sequence of the algorithm at the RDD level. 
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Figure 5. RDD level transformation logic and operator call sequence 

In Figure 5, the evaluation index calculation system of rule 𝐴 ⇒ 𝐵 is shown in equation (7). 

{
 
 

 
 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ⇒ 𝐵) = 𝑃(𝐴 ∪ 𝐵) =

Count(𝐴∪𝐵)

|𝐷|

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 ⇒ 𝐵) = 𝑃(𝐵|𝐴) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴∪𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)

𝐿𝑖𝑓𝑡(𝐴 ⇒ 𝐵) =
𝑃(𝐵|𝐴)

𝑃(𝐵)
=

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴⇒𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵)

                                                       (7) 

In equation (7), |𝐷| is the total number of transactions. Where, there is a positive correlation between 𝐴 

and 𝐵 that has actual value. In Spark implementation, the flatMap operator is used to decompose frequent 

itemsets into rule antecedents and consequents. The above indicators are calculated in parallel. Finally, 

strong association rules that meet the threshold are output. 

Algorithm: RDD-Apriori - Improved Apriori Algorithm for Power Marketing Big Data 

Input: 

• 𝐷: Input dataset with 𝑁instances (𝑥𝑖, 𝑦𝑖) 

• 𝐵: Batch size for inference (parameter for memory control) 

• 𝜃: Pruning threshold for feature selection 

• 𝛾: Minimum support threshold for frequent itemset mining 
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• 𝑆: Sample size for distributed SHAP explanation 

Output: 

• 𝑦̂: Predicted power consumption patterns (association rules) 

• Φ: SHAP explanations for the selected samples 

Steps: 

1. Preprocessing: Clean the input data, removing duplicates and outliers. 

2. Feature Selection: Identify the feature subset 𝐹where variance Var(𝑥𝑗) > 𝜃and mutual 

information MI(𝑥𝑗, 𝑦) > 𝛾. 

3. Data Transformation: Use K-Means clustering for discretizing continuous features to adapt 

them for Apriori. 

4. RDD Architecture: Process the data in a distributed environment using Spark's RDD model for 

memory-efficient computation. 

5. Algorithm Training: Fit the Apriori model to the preprocessed and discretized data using the 

Spark framework. 

6. Batch-Wise Inference: For 𝑖 = 0to 𝑁with batch size 𝐵: 

o Load 𝑋batch = 𝐷reduced[𝑖: 𝑖 + 𝐵] 

o Perform parallel support counting and pruning to reduce I/O overhead. 

7. Selective SHAP Explanation: 

o Select a random stratified sample 𝐷SHAPfrom 𝐷reduced 

o Initialize SHAP explainer on the trained model 

o Compute Φ = explainer.SHAP_values(𝐷SHAP) 

8. Return: Output 𝑦̂and Φas predicted rules and their explanations. 

RDD-Apriori algorithm is an improved algorithm of the original Apriori algorithm, which can efficiently 

handle great amount of power marketing big data and utilize Spark through Resilient Distributed Dataset 

(RDD) architecture. It maximizes the data preprocessing, feature selection and frequent itemset mining 

through parallel processing. Some of the important innovations are the implementation of the support 

counting by use of Bitmap in order to reduce the I/O overhead, compression of transactions in order to 

accommodate the use of massive sets of candidates and an efficient pruning algorithm to reduce the use 

of memory. The algorithm is effective in the extraction of quality association rule that is useful in power 

marketing, including consumption and pricing behavior. 
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Experimental environment and evaluation indicators 

After completing the distributed architecture design of the algorithm, the operating efficiency and rule 

mining quality in a large-scale power data environment are evaluated. To objectively verify the 

performance of the RDD-Apriori algorithm in power marketing big data processing, a high-performance 

computing cluster based on Hadoop/Spark is built and a comparative experiment is designed. The 

experimental environment consists of one Master node and four Slave nodes. All nodes are 

interconnected through Gigabit switches to build a LAN computing cluster. The operating system is 

Ubuntu Server 20.04 LTS, the underlying file system is Hadoop HDFS 2.7.2, and the computing engine 

is Spark 2.4.0. The JDK version is 1.8 and the Scala version is 2.11. The specific configuration is shown 

in Table 1. 

Table 1. Experimental environment configuration 

Configuration item Master node (1 unit) Slave nodes (4 units) 

CPU 
Intel Xeon Silver 4208 @ 2.10GHz 

(8 cores and 16 threads) 

Intel Core i7-10700 @ 2.90GHz 

(8 cores and 8 threads) 

Memory (RAM) 32GB DDR4 2666MHz 16GB DDR4 2666MHz 

Hard Disk 512GB NVMe SSD+2TB HDD 1TB SATA HDD 

Network (Network) Gigabit Ethernet card (1Gbps Ethernet) 

Operating system Ubuntu Server 20.04 LTS 

Bottom level system Hadoop HDFS 2.7.2 

computing engine Spark 2.4.0 

development environment JDK 1.8.0_201 / Scala 2.11.8 

Database/Tools MySQL 5.7 / Hive 2.3.4 

To verify the effectiveness of the RDD-Apriori algorithm when processing data of different sizes and 

types, two data sets are selected for the experiment and the right to use them has been obtained. The 

benchmark test uses the "Individual Household Electric Power Consumption" public data set 

(https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption) provided 

by the UCI machine learning library. This data set contains more than 2 million household electricity 

consumption sampling records, and the study extracts 1 million pieces of data for experiments. The real 

power marketing business data set is derived from the desensitized business data of the marketing 

management system of a provincial power company. This data set covers 2023 to 2025, with a total 

number of records of approximately 5 million, and the original storage size is approximately 2.5GB. 

After preprocessing steps such as data cleaning, discretization and Boolean matrix conversion, the data 

are reconstructed into a 67-dimensional feature space to fully simulate the association rule mining 

scenario in the power marketing big data environment. The research mainly constructs an evaluation 

system from two dimensions: algorithm performance and mining quality, as shown in Figure 6. 

In Figure 6, in terms of performance evaluation, the study first examines the running time, that is, the 

entire process time from task submission to result output, including data reading, data transmission in 

the Shuffle stage, and calculation time. Then, the peak memory usage is tested, and the JVM heap 

memory usage of each Worker node is monitored during the peak period of algorithm running, 

quantitatively verifying the optimization effect of the algorithm on memory space. The Shuffle write 

volume is then used to measure the data transmission overhead between nodes in the distributed 

computing process, reflecting the communication cost of the algorithm. Next, the speedup ratio is used 

to measure the speed improvement of the parallel algorithm compared to the single-machine 

environment, as shown in equation (8). 
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𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑇1/𝑇𝑝                        (8) 

 

Figure 6. Algorithm evaluation system 

In equation (8), 𝑇1 represents the running time of a single node. 𝑇𝑝 represents the running time of 
𝑝

 

nodes. This indicator directly reflects the performance gain brought by cluster expansion. In addition, 

the study introduces the expansion rate to evaluate the performance maintenance capability of the system 

when the amount of data increases in proportion to the number of computing nodes. The specific 

expression is shown in equation (9). 

𝑆𝑐𝑎𝑙𝑒𝑢𝑝 = 𝑇(1,1)/𝑇(𝑚,𝑚)                 (9) 

In equation (9), 𝑇(1,1) represents the processing time on a single node for 1 time the amount of data. 

𝑇(𝑚,𝑚) represents the processing time of 𝑚 times the amount of data on 𝑚 nodes. To verify the 

commercial value of the mined power marketing rules, the study uses support and confidence to measure 

the universality and prediction accuracy of the rules. The lift is used to measure the promoting effect of 

the rule's antecedent on the consequent. The rule is judged to be effective only when Lift>1. 

RESULTS 

Analysis Of Algorithm Performance Verification Results 

To verify the effectiveness of the RDD-Apriori algorithm, the performance of different algorithms in a 

public data set was compared. The data set has 1 million pieces of data. The comparison algorithms 

include Traditional Apriori, Spark FP-Growth and "Yet Another Frequent Itemset Mining" (YAFIM). 

The evaluation indicators used include running time and peak Java Virtual Machine (JVM) heap memory 

usage. To ensure the accuracy of the results, a total of 20 tests were conducted, and the results are shown 

in Figure 7. From Figure 7(a), Traditional Apriori was limited by the single-machine computing 

bottleneck, had the highest time consumption and obvious fluctuations, with an average of 486.5s. Spark 

FP-Growth took advantage of distributed computing to significantly reduce the time consumption to 
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248.2s, and the YAFIM algorithm was further optimized to 215.6s. The RDD-Apriori algorithm had the 

lowest average time consumption, only 183.4s. From Figure 7(b), in terms of peak memory usage, RDD-

Apriori benefited from bitmap compression and transaction matrix optimization technology, and the 

peak memory was 1755.2MB, saving 38.6% of memory space compared to the Spark benchmark. It 

shows that the RDD-Apriori algorithm has great advantages in running time and memory. 
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Figure 7. The running time and peak memory of different algorithms 

The study then verified the scalability of the RDD-Apriori algorithm when the data size grew linearly, 

and compared the running time and Shuffle write volume under different data volumes. Traditional 

Apriori is a stand-alone algorithm and does not have the Shuffle process in distributed computing. The 

specific test results are shown in Figure 8. From Figure 8(a), as the data size increased from 200,000 to 

1 million, the running time of the four algorithms showed an upward trend. Traditional Apriori was 

limited by single-machine I/O and computing bottlenecks, and its time-consuming curve was the 

steepest, increasing from 85.2s to 486.5s, indicating that it does not have the scalability to handle 

massive data. However, RDD-Apriori always maintains the lowest time level and has the gentlest growth 

curve, only increasing from 51.2s to 183.4s. From Figure 8(b), the Shuffle write volume generated by 

Spark FP-Growth increased sharply with the data size, reaching a peak of 820.1MB when there were 1 

million pieces of data, which puts a heavy burden on the cluster network. Although the YAFIM algorithm 

reduces the transmission volume to 550.3MB through optimization, its performance is still not as good 

as RDD-Apriori, and its shuffle volume is only 395.2MB. The proposed algorithm has high operating 

efficiency under data sets of different sizes. 

The research continues to verify the parallel computing efficiency of each algorithm in a distributed 

cluster environment. By gradually increasing the number of Worker nodes, the speedup ratio of each 

algorithm is examined. To highlight the advantages of multiple nodes, the experiment selected a real 

power marketing business data set with a data size of 5 million. The comparison results of the running 

time and speedup ratio of different algorithms under different numbers of nodes are shown in Figure 9. 

From Figure 9(a), Spark FP-Growth had the highest time consumption due to the large construction and 

maintenance overhead of the tree structure, from 4120.5s for a single node to 1320.6s for five nodes. 

YAFIM performed in the middle. The time consumption of the RDD-Apriori algorithm was significantly 

reduced from 3240.6s to 865.3s, indicating that increasing computing resources can most efficiently 

translate into time gains for the algorithm. From Figure 9(b), the speedup ratio curve of Spark FP-Growth 

grew slowly and only reached 3.12 when there were five nodes. As the number of nodes increases, 
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frequent data communication between nodes offsets part of the dividends of parallel computing. In 

contrast, the speedup ratio curve of RDD-Apriori is closest to the ideal line, reaching 3.75 at five nodes, 

which is better than that of the Spark benchmark and YAFIM algorithm. RDD-Apriori greatly reduces 

network communication bottlenecks through bitmap compression technology, allowing it to have 

stronger parallel acceleration capabilities when the cluster expands. 
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Figure 8. Running time and Shuffle output under different data volumes 

The study further examines whether the system can maintain stable processing efficiency when the data 

size and computing resources increase in proportion. The experiment is conducted based on a real power 

marketing data set. The experiment kept the amount of data processed by a single node constant at 1 

million pieces, with one node processing 1 million pieces of data and two nodes processing 2 million 

pieces of data. The study gradually reduces the global minimum support and forces the algorithm to 

mine sparser and massive candidate sets to verify the robustness of the algorithm. The expansion rate of 

each algorithm and the running time under different minimum support degrees are shown in Figure 10. 

From Figure 10(a), as the amount of data increased, the expansion rates of the three distributed 

algorithms all showed a downward trend, which is in line with the general law that communication 

overhead in distributed systems increases with the scale of the cluster. The Spark FP-Growth algorithm 

had the largest decline, with an expansion rate of only 55% when five nodes have 5 million pieces of 

data. The expansion rate of the RDD-Apriori algorithm was 79%. From Figure 10(b), the Traditional 

Apriori algorithm cannot complete the calculation due to memory overflow or timeout after the support 

is lower than 0.4%. The running time of Spark FP-Growth reached 1094.7s under low support (0.1%). 

The running time of the RDD-Apriori algorithm when the minimum support was 0.1% was significantly 

lower than that of the other algorithms, only 480.2s. The RDD-Apriori algorithm has excellent 

scalability and strong robustness when dealing with complex mining tasks of massive sparse data. 
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Figure 9. Running time and speedup ratio under different numbers of nodes 
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Figure 10. The expansion rate of various algorithms and the running time under different minimum support levels 

Electric power marketing correlation analysis results 

The study uses 5 million real power marketing business data sets to mine association rules based on the 

RDD-Apriori algorithm. By adjusting the threshold combination of minimum support and minimum 

confidence, the study observes the changing relationship between the quantity and quality of generated 

rules, and then determines the optimal parameter configuration. The test results are shown in Table 2. 

As the threshold increases, the number of generated rules decreases sharply and the average 

improvement degree increases steadily. Experimental groups A and B had rule redundancy and weak 

correlation due to too low thresholds, while groups D and E had key patterns missing due to excessive 

strictness. In contrast, experimental group C (support 0.4/confidence 0.6) achieved the best balance 

between mining quantity and quality, effectively filtering noise while retaining 12 strong association 

rules, with an average improvement of 1.26. Therefore, the study selects group C as the optimal 

parameter configuration. 
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Table 2. Comparison of association rule mining results under different threshold combinations 

Experimental 

group number 

Minimum 

Support 

Minimum 

Confidence 

Total number 

of generated 

rules (pieces) 

Number of 

strong 

association 

rules (Lift>1) 

Average 

lift 

A 0.3 0.5 185 92 1.06 

B 0.3 0.7 74 45 1.13 

C 0.4 0.6 28 12 1.26 

D 0.5 0.8 4 4 1.32 

E 0.6 0.85 0 0 / 

Table 3. Detailed indicators of core association rules for power marketing 

Rule 

ID 
Antecedent Rule Rule consequent Support Confidence Lift 

Business 

Consistency 

Verification 

R1 
Industrial User (Industry 

Code 02) 

High load from 

9:00-18:00 on 

weekdays 

0.75 0.89 1.35 Consistent 

R2 
Maximum temperature>35° 

C+residential users 

Air conditioning 

load surge (all day) 
0.68 0.85 1.42 Consistent 

R3 
Commercial users (large 

supermarkets) 

Continuous peak 

during holidays 

from 10:00-22:00 

0.72 0.82 1.28 Consistent 

R4 
Resident users+cold wave 

warning (<0°C) 

Heating equipment 

load increases 
0.66 0.78 1.31 Consistent 

R5 

High energy consuming 

enterprises+peak valley 

electricity price 

implementation 

Load transfer at 

night (0:00-8:00) 
0.74 0.81 1.22 Consistent 

R6 
Office building users 

(business office) 

Working days 

12:00-14:00, low 

load period 

0.76 0.88 1.33 Consistent 

R7 
Agricultural irrigation and 

drainage users+rainfall<5mm 

Electricity peak 

from 0:00 to 6:00 

in the morning 

0.65 0.79 1.25 Consistent 

R8 Catering industry users 

Daily peak hours 

from 18:00 to 

21:00 in the 

evening 

0.71 0.83 1.3 Consistent 

R9 

Hotel accommodation 

industry+summer vacation 

(July August) 

High load operation 

throughout the day 
0.7 0.84 1.29 Consistent 

R10 
Electric vehicle charging 

station 

18: 00-22:00 

Charging load 

concentration 

0.69 0.86 1.4 Consistent 

R11 

Educational institutions 

(primary and secondary 

schools)+winter and summer 

vacations 

Overall load 

rate<20% 
0.73 0.8 1.26 Consistent 

R12 
Industrial users+peak order 

season (Q4) 

Weekend load does 

not decrease 

(continuous 

production) 

0.75 0.87 1.36 Consistent 

Mean / 0.71 0.83 1.31 Consistent 

Based on the optimal parameter configuration determined in the previous experiment, the algorithm 
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effectively filtered out low-value redundant rules and selected 12 core association rules with an 

improvement greater than 1.2. The detailed quantitative indicators and business consistency verification 

results of these rules are shown in Table 3. The RDD-Apriori algorithm performed better in mining high-

quality business logic. From the statistical indicators, the average support of the 12 core rules reached 

0.71, and the average confidence was 0.83, indicating that the mined electricity consumption pattern has 

extremely high universality and prediction accuracy in massive data. The average improvement degree 

of the rules was 1.31, and all rules exceed the threshold of 1.2, confirming that there is a significant 

positive correlation between the antecedent and the consequent of the rule. Specifically, R1 reveals the 

rigid load characteristics exhibited by industrial users during workdays, with an improvement of 1.35. 

R2 quantifies the strong driving effect of high temperature weather (>35°C) on residents’ air 

conditioning load, with an improvement degree of 1.42. The RDD-Apriori algorithm can provide a 

reliable data basis for power companies to formulate differentiated marketing strategies and load 

dispatch. 

The ablation experiment determines the influence of various elements of the RDD-Apriori algorithm by 

also removing or modifying single features and evaluating the effect of each on performance. It has been 

shown that optimizations, including support counting by the use of bitmaps, transaction compression, 

and pruning strategy are among the factors that enable computational overhead to be significantly 

decreased and memory efficiency is enhanced. Using comparison between the full algorithm and the 

versions that do not contain certain optimizations, it is proved that each of the components has its impact 

on overall efficiency with the most significant changes being observed with regards to running time and 

scalability in case of multiple optimizations. 

DISCUSSION AND CONCLUSION 

To solve the problem that traditional association rule algorithms are inefficient and difficult to adapt to 

large-scale distributed environments when processing massive and heterogeneous electric power 

marketing data, the RDD-Apriori algorithm was proposed. The research fully optimized the algorithm 

by introducing parallel preprocessing process, bitmap support counting and transaction compression 

mechanism under the Spark computing framework. Experimental data showed that when processing 1 

million public data sets, the running time of the RDD-Apriori algorithm was only 183.4s, which was 

approximately 62.3% shorter than the 486.5s of the traditional stand-alone Apriori algorithm, and the 

peak memory usage was only 1755.2MB, which was 38.6% lower than that of the Spark benchmark. In 

a scalability test on 5 million pieces of real power marketing business data, the algorithm achieved a 

speedup ratio of 3.75 on five nodes. Under extremely sparse tasks with the support threshold reduced to 

0.1%, it could still complete the calculation in a stable time of 480.2s [19]. The research uses bitmap 

compression to convert the originally heavy full table scan into efficient logical bit operations, which 

greatly reduces I/O overhead. The transaction compression strategy effectively curbs the exponential 

explosion of candidate item sets by dynamically eliminating invalid transactions with insufficient length 

during iterations [17]. In addition, the 12 core association rules mined have extremely high business 

consistency, with an average improvement of 1.31, confirming that the mining results have significant 

positive business correlation value and are not statistical deviations. 

The integration solution of RDD distributed architecture and optimized Apriori algorithm can efficiently 

extract high-value information from massive power data, providing a scientific basis for power 

companies to formulate precise marketing, peak and valley dispatch and electricity price policies. 
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However, the current discretization process still relies on the preset K-Means clustering number, and the 

dynamic response capability to real-time streaming data needs to be improved. Future research will 

explore the automatic optimization clustering algorithm to enhance adaptability, and try to combine 

Spark Streaming technology to expand the mining model to near-real-time load analysis scenarios to 

further promote the transformation of power marketing to intelligence. 
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